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Abstract 

Buildings consume approximately 40% of end-use energy worldwide and are 

responsible for approximately one-third of greenhouse gas (GHG) emissions. Clearly, 

designing high energy performance buildings and identifying effective energy retrofit 

measures not only decrease CO2 emissions, but also reduce the need for non-renewable 

energy sources. 

While the traditional rules of thumb and building codes improve the building energy 

efficiency, they are likely to be far from the optimal design as they do not consider the 

interactions among design variables. Therefore, new methods should be developed to 

achieve the maximum energy savings. Building energy optimisation (BEO) is a 

method that considers interactions among design variables and selects the optimal 

building design from a set of available alternative designs based on the mathematics. 

A challenge of currently-available optimisation methods is that they suffer from high 

computational cost due to high complexities in building optimisation problems 

including multi-modal and nonlinear behaviour of building thermal performance, 

discontinuities in the optimisation variables (e.g. window type), uncertainty in building 

design parameters (e.g. alterations in building operating conditions) and 

discontinuities in the output of building simulation software (e.g. EnergyPlus). This 

high computational cost remains a key barrier to the widespread utilisation of 

optimisation as a design tool. 

Accordingly, the focus of this research is on developing new efficient solution methods 

for Building Optimisation Problems (BOPs) and deploying them on realistic case 

studies to evaluate their performance and utility. Generally, BOPs can be categorised 

into two main groups: simulation-based optimisation (software-in-the-loop method) 
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and surrogate-based optimisation methods. In this thesis, new methods were developed 

to improve the performance of both methods. Furthermore, a new methodology was 

developed to address uncertainty of building simulation inputs during the optimisation 

process to select a robust optimised design. 

For the simulation-based optimisation method, two optimisation algorithms called Ant 

Colony Optimisation for continuous variable (ACOR), and Ant Colony Optimisation 

for mixed variable (ACOMV-M) for BOPs were developed for BOPs. Results 

demonstrated that both algorithms are noticeably more efficient than benchmark 

algorithms in terms of optimality, consistency, and computational cost. 

For the surrogate model-based optimisation method, a new method called Surrogate 

model-based Optimisation using Active Learning (SOAL) was developed using active 

learning methods and optimisation of multiple surrogate models. Results demonstrated 

that proposed optimisation methods could significantly improve the performance of 

the surrogate-based optimisation method. Importantly, in single objective optimisation 

problems, the SOAL method is competitive with the simulation-based optimisation 

method using ACOR, with better performance in the early stages of optimisation. 

To address the uncertainty of building simulation inputs during the optimisation 

process, a new methodology was developed based on a multi-objective scenario-based 

optimisation. Results demonstrated the capability of the proposed uncertainty 

methodology to find a robust design. 

The capability of all proposed methods has been investigated by applying them to 

buildings Type A and Type B, recommended by Australian Building Codes Board as 

representatives of typical commercial buildings in Australia.  

The findings of this research are significant as the proposed optimisation methods have 

considerably facilitated solving of BOPs. They are expected to assist building 
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designers in meeting efnergy efficiency requirements in building codes. Moreover, 

applying proposed optimisation methods to buildings in different Australian climates 

can explore maximum potential energy savings, identify the optimal values of design 

variables and provide building designers with more efficient methods for designing 

robust energy-optimised buildings in each climate zone. 
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Chapter 1: Introduction 

1.1 Background  

Reducing energy consumption is one of the world’s most challenging issues, 

particularly with increases in population and economic growth. According to the 

United Nations Environment Program, buildings consume approximately 40% of the 

world's energy and they are responsible for approximately one-third of greenhouse gas 

emissions in the world [1]. If no measures are taken to reduce buildings’ energy 

consumption, GHG emissions from buildings will be almost  double by 2030 [1].  

In Australia, the Council of Australian Governments’ (COAG) Energy Council has set 

a National Energy Productivity Plan (NEPP) [2], which aims to improve Australia’s 

energy productivity by 40% by 2030, and improving the energy efficiency of buildings 

has been announced as one of the key measures to reach Australia’s energy 

productivity target. In Australia, the building sector accounts for approximately 20% 

of total final energy consumption; it was found that energy efficiency requirements in 

building codes are “out of date with recent technologies” and require changes to 

achieve better energy efficiency outcomes [3]. 

Currently-used methods to design low-energy buildings are frequently based on 

computer simulation and Parametric (or Sensitivity) Analysis. In this method, in order 

to find values of design variables to reduce energy consumption, a base building model 

is first created and the design variables are varied one at a time (e.g. window-to-wall 

ratio) while holding others constant. This method requires a large number of building 

simulations, which might be impractical for all parameters. Yet, the main limitation is 

that this method neglects the considerable interaction between parameters. Therefore, 

some potential energy saving measures are either not explored, or are at suboptimal 
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values. For example, in a building with a daylighting system, the optimised values of 

window and shading sizes can hardly be estimated since the use of natural light reduces 

energy use of artificial lighting and HVAC system (i.e. heat generation of lights) while 

increases solar heat gains simultaneously. Considering more variables (e.g. building 

orientation), makes the design problem highly complex for the maximum energy 

saving estimation.  

With more stringent energy performance requirements and high demand for low-

energy buildings, improved methods are required to design buildings to achieve 

maximum potential energy savings. This requires considering a combination of design 

parameters in the design process simultaneously, rather than merely one parameter 

each time.  

Building Optimisation Problems (BOPs) provide a more rigorous framework for 

exploring new designs that manage complex trade-offs in ways that are not possible 

when using traditional methods. Methods for solving BOPs are primarily software-in-

the-loop methods (coupling building simulation software with a mathematical 

optimisation algorithm). These methods seek to find the near-optimal design by 

intelligently exploring the candidate design values to find promising solutions and 

evaluating their suitability using building simulations. The extensive body of research 

in this area has clearly demonstrated that optimisation can dramatically reduce the 

energy consumption of buildings [4-14]. 

1.2 Research Problem  

Building Optimisation Problems can be categorised into two main groups based on the 

method applied for optimisation [15]: simulation-based optimisation (also known as 

software-in-the-loop) and surrogate model-based optimisation methods.  
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Simulation-based optimisation (coupling building simulation software with a 

mathematical optimisation algorithm) is the most common building optimisation 

problem method and it has been applied in many studies. However, there are still a 

number of challenges in solving BOPs, which need to be addressed. 

First, commonly used simulation-based optimisation algorithms (e.g. Genetic 

Algorithms and Particle Swarm Optimisation) use stochastic search strategies that 

require hundreds to thousands of time-consuming building simulations to converge. 

Optimisation time depends on many parameters such as number of objective functions 

and optimisation variables, and optimisation algorithm. With current computing 

power, some optimisation runs may take several weeks or months [16, 17]. 

Furthermore, as the behaviour of building thermal performance is nonlinear, the 

optimisation algorithm may become trapped in local minima [15]. A common strategy 

to avoid local minima is to restart the optimisation procedure with different 

initialisations, thus further increasing the computational cost [18]. 

Secondly, if the optimisation problem involves multiple objectives (e.g. energy 

consumption, thermal comfort and cost) or uncertain parameters, the number of 

required building simulations to find Pareto-optimal and/or robust solutions will 

increase significantly, which may make simulation-based optimisation methods 

impractical [19, 20].  

This high computational cost remains a key barrier to the widespread utilisation of 

optimisation as a design tool [15, 17, 21]. New optimisation algorithms for BOPs could 

offer a solution to reduce computational cost and burden associated with the 

simulation-based optimisation method, which is one of the objectives in this research. 

Although new optimisation algorithms could improve the performance of this method, 

for high dimensional optimisation problems with computationally expensive building 
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models, the simulation-based optimisation method may become computationally 

intractable [15, 19, 22, 23], even after applying new optimisation algorithms.  

Accordingly, it is necessary to develop an optimisation method that has the ability to 

address these computational challenges. Building energy optimisation using surrogate 

models (surrogate-based optimisation) is a promising method that has shown potential 

to find a near-optimal design in a reasonable time [19]. However, the limited number 

of studies conducted so far [15] have not explored how to construct surrogate models 

efficiently, nor fully exploited their advantages in enabling optimisation 

improvements. 

1.3 Research Gap 

The research gaps are summarised below. 

• The application of both simulation-based optimisation and surrogate-based 

optimisation methods in buildings remains an active research area. However, 

both methods suffer from high computational cost to find near optimal 

solutions.  

• Many optimisation algorithms have been developed in other fields (particularly 

computer science), which have shown better performance than state-of-art 

optimisation algorithms for BOPs in benchmark optimisation problems. 

However, their performance in BOPS has not been evaluated. 

• A few studies considered uncertainty of building parameters (e.g. occupant 

behaviour) in BOPs. Current methods to address uncertainty are very time-

consuming and often require probabilistic distributions of parameters, which 

may not be available or representative. 
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• The limited number of studies conducted so far [15] have not explored how to 

construct surrogate models efficiently nor fully exploited their advantages in 

enabling optimisation improvements.  

• No systematic study has been conducted to compare the quality of solutions 

and the computational performance between surrogate-based optimisation and 

a simulation-based optimisation method. 

• There is no study conducted to identify the optimal design of commercial 

buildings in Australia and explore the maximum achievable energy savings. 

1.4 Research Questions 

The focus of this research is on developing new efficient methods for BOPs and 

deploying these algorithms on realistic case studies to evaluate their performance and 

utility. The research gaps suggest the following questions that will be examined in this 

research: 

1) Simulation-based optimisation. How can a new algorithm be developed to 

improve the simulation-based optimisation method in terms of optimality, 

consistency (reliably achieving solutions close to the optimal), and 

computational cost (number of simulations)?  

A large number of optimisation algorithms have been deployed on BOPs, but a 

number of new optimisation approaches have been developed since most of the 

recent benchmarking studies. Thus, an investigation into adapting and applying 

these approaches to BOPs is warranted.  

2) Influence of uncertainty. What is the effect of uncertainty on the “optimal” 

building? How can BOPs that mitigate the influence of uncertainty be formulated 

and solved efficiently? 
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While uncertainty has been investigated in a number of studies in building 

simulation (i.e. the “performance gap” noted in many studies), its influence on 

the energy consumption of the “optimal” building has not been investigated. This 

uncertainty is particularly important given the presence of highly uncertain 

parameters that depend on usage (e.g. internal loads). The impact of erroneous 

assumptions and methods to mitigate their influence will be studied in this 

research. 

3) Surrogate model optimisation. How can artificial intelligence and 

approximation algorithms yield a more effective approach for building 

optimisation in terms of optimality, consistency, and computational cost?  

Recent investigations into surrogate approaches have shown that they are a 

promising methodology for reducing the computational burden of solving BOPs. 

However, these preliminary approaches only used the surrogate model at the 

most superficial level. In particular, these studies did not investigate using the 

properties of the model to improve the optimisation (e.g. coupling the 

optimisation and the surrogate model training sample selection).  

1.5 Research Aim and Objectives  

This research aims to develop new optimisation methods for BOPs, which enable more 

widespread practical use as a building design tool. To this end, the objectives of the 

research are: 

1) Create a new optimisation algorithm that is able to consistently find higher 

quality solutions with less computational cost than existing methods. 
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2) Deploy the new algorithm to evaluate and mitigate the influence of uncertain 

building simulation parameters on the resulting optimised building. 

3) Develop an optimisation method, based on surrogate models, that improves 

the speed and/or quality of the optimised building.  

1.6 Significance and Contributions 

The first contribution of this research is to improve performance of simulation-based 

optimisation methods for BOPs. This was accomplished by development of two 

optimisation algorithms: ACOR algorithm for BOPs with continuous variables, and 

ACOMV-M algorithm for BOPs with mixed variables. Both algorithms are more 

efficient than current building optimisation algorithms in terms of optimality, 

consistency, and computational cost.  

A second contribution of this research is to develop a new methodology for surrogate 

model-based optimisation methods. This was accomplished by the development of a 

new sample selection method to intelligently select samples for the surrogate model 

construction and development of a new method based on a committee of surrogate 

models in the optimisation loop. 

A third contribution of this research is the development of a new methodology to 

address uncertainty of building simulation inputs during the optimisation process and 

select a robust design. This was accomplished by development of a multi-objective 

scenario-based optimisation and solved by the proposed optimisation algorithm 

(ACOMV-M).  

The findings of this research are significant as the proposed optimisation method and 

algorithms have considerably facilitated the solving of BOPs. They are expected to aid 
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building designers in meeting energy efficiency requirements in building codes. 

Moreover, applying proposed optimisation methods to buildings in different 

Australian climates can explore maximum potential energy savings, identify the 

optimal values of design variables and provide building designers with more efficient 

methods for designing robust energy-optimised buildings in each climate zone.  

1.7 Thesis Outline  

 
The remainder of this thesis is organised as follows: 

Chapter 2 presents a comprehensive literature review. This chapter is divided into three 

main sections. The first section discusses simulation-based optimisation methods and 

reviews the current optimisation algorithms for BOPs. The second section presents a 

review of the application of surrogate models for both building energy prediction and 

optimisation. In this section, sample selection methods in other research areas (mainly 

computer science) are also reviewed. The third section provides a review on 

uncertainty in BOPs. This chapter ends by critically evaluating the literature and 

identifying the shortcomings and limitations of existing studies.  

Chapter 3 discusses building simulation. This chapter begins with an introduction of 

building simulation software and subsequently details the two different buildings used 

as case studies in this research. In the final section, results of simulation and validation 

are presented. 

Chapter 4 discusses a simulation-based optimisation method. This chapter is divided 

into five main parts. The first part introduces the optimisation problem while the 

second part discusses the development of simulation optimisation platform. The next 

part describes a new optimisation algorithm (ACOR) for BOPs and the identification 

of benchmark algorithms from literature. The chapter ends by presenting the 
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optimisation results of ACOR and benchmark algorithms, followed by the 

conclusions.  

Chapter 5 begins with the development of a new optimisation algorithm (called 

ACOMV-M) for solving BOPs with both continuous and discrete variables. Then, the 

performance of ACOMV-M was evaluated and compared against benchmark 

algorithms identified from literature. The final part of this chapter presents the 

conclusions.  

In Chapter 6, optimisation under uncertainty is discussed. First, the sensitivity of 

optimal building parameters to three different sets of building simulation parameters 

(e.g. lighting loads) is investigated. Then, a multi-objective problem was developed 

and solved using the ACOMV-M to examine the uncertainty of building simulation 

parameters during the optimisation process and select a robust design. This chapter 

ends by presenting the results, followed by conclusion. 

In Chapter 7, a new surrogate model-based optimisation method is developed and its 

results are compared to conventional surrogate model-based optimisation and 

simulation-based optimisation methods. This chapter is divided into four main 

sections. The first section discusses the artificial neural networks that are to serve as 

the surrogate model. Next, a new sample selection method is detailed, which is used 

in the new surrogate-based optimisation method discussed in the following section. 

The final section presents the results and conclusion. 

Finally, Chapter 8 presents the major conclusions of the research, its limitations and 

recommendations for future work.  
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Chapter 2: Literature Review 

2.1 Overview  

This chapter reviews the most relevant literature related to building optimisation 

methods and uncertainty in BOPs. Numerous studies have been conducted so far and 

their application to BOPs can be categorised into two main groups:  

• Simulation-based optimisation method (software-in-the-loop method) 

• Surrogate-based optimisation method 

Section 2.2 reviews previous studies on simulation-based optimisation methods and 

Section 2.3 presents the literature review on surrogate-based optimisation methods. 

In Section 2.4, the literature on uncertainty in BOPs is presented. Finally, research 

gaps for each method are identified in Section 2.5.  

2.2 Simulation-Based Optimisation  

The conventional method for solving BOPs is simulation-based optimisation, where 

building simulation software is coupled with an optimisation algorithm (e.g. Genetic 

Algorithm). In these methods, building simulation software plays the role of the 

objective function (e.g. energy consumption, thermal comfort) and the decision 

variables are manipulated by an optimisation algorithm to iteratively improve the 

objective function.   

The performance of the simulation-based optimisation depends strongly on the 

optimisation algorithms. Figure 2.1 indicates a classification of the most-used 

optimisation algorithms in BOPs, according to method of operation. In addition, Table 

2.1 shows the main features of each category with examples of typical algorithms. 
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Optimisation algorithms can be generally classified into two categories: Gradient-

based algorithms and Derivative-Free (DF) algorithms.  

 Optimisation 
Algorithms 

Derivative-free 
Algorithms 

Gradient-based 
Algorithms 

Global Search  
 (Meta-Heuristic) 

 

Local Search 
Algorithms 

Single Solution based 
Algorithms 

Population-based 
algorithm 

The Gradient-based methods like the Levenberg–Marquardt algorithm or Discrete 

Armijo algorithm use the gradient of the function to find the optimal solutions. Although 

these methods benefit from fast convergence and guarantee a local minimum, they are 

very sensitive to discontinuities in the objective functions and multi-modal functions, 

which cause these algorithms to be inappropriate for BOPs [15, 17, 21, 24, 25]. 

The second category is Derivative-Free (DF) algorithms (e.g. stochastic optimisation 

algorithms), which do not require the calculation of the objective function derivatives. 

However, these algorithms often require a large number of objective function 

evaluations and cannot guarantee the local optimality of the solution due to their 

derivative-free search mechanisms. However, the term ‘optimisation’ in BOPs does 

Figure 2.1: Classification of optimisation algorithms for BOPs 
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not necessarily mean searching for the global optima, as it may be infeasible due to the 

nature of either the optimisation problem or the simulation software itself [15, 24, 26]. 

DF algorithms are capable of dealing with both linear and nonlinear problems with 

discontinuities. These features make these algorithms suitable for BOPs [15, 17, 21, 

27].  

Table 2-1: Classification of optimisation algorithms for BOPs 

Algorithms Features Examples 

Gradient-based 
Algorithms 

+Fast convergence 
+Guaranteed local optimality 
– Sensitive to discontinuities 

– May easily fall into a local minimum 

Levenberg–Marquardt 
algorithm, Discrete Armijo 

Gradient algorithm 

DF: Local Search 
Algorithms 

+Less sensitive to discontinuities 
– May easily fall into a local minimum 

Nelder-Mead Simplex, 
Hooke- Jeeves 

DF: Global Search 
Algorithms 

+Appropriate for nonlinear functions 
+Not sensitive to discontinuities  
– No guaranteed optimality 

Evolutionary-based  
optimisation algorithms 

Swarm intelligence-based 
algorithms 

Single Solution-based 
Algorithms 

+Rather fast  
– No guaranteed optimality 

– May easily fall into a local minimum 

Simulated annealing,  
Tabu search 

Population-based 
Algorithm 

+Mechanisms to avoid local optima 
– No Guaranteed optimality 

–Large number of function evaluations GA, ACOR, PSO, Bee Colony 

Hybrid Algorithms +Combination of above features  
(depends on hybridisation) 

PSO-HJ, CMA-ES/HDE 

 

DF optimisation algorithms have been largely used in building optimisation studies. 

Peippo et al. [28] applied the Hooke and Jeeves pattern search method to identify the 

optimal design variables for solar energy buildings. Bouchlaghem [10] used the 

simplex method of Nelder and Mead and the non-random complex method to optimise 
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the design of building envelopes. Michalek et al. [29] used Simulated Annealing (SA), 

Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) to search for 

global solutions for optimising the building design. Ant colony optimisation for 

discrete problems and the Radiance software were used to find a trade-off between 

lighting performance and cost for a media centre in Paris [30]. Wang et al. [4] applied 

a simulation-based optimisation method using GA to design a green building. 

Chantrelle et al. [31] developed a multi-criteria tool, which uses GA to optimise energy 

consumption, thermal comfort, cost and life-cycle environmental impact. Fesanghary 

et al. [5] developed a harmony search algorithm to minimise life cycle cost and carbon 

dioxide emissions. A graphical optimisation method was used to find the trade-off 

between energy and visual comfort for glazing systems in an office room [32]. Non-

dominated Sorting Genetic Algorithm was used to minimise energy consumption for 

heating, cooling and lighting of an open space office building with respect to building 

envelope configurations [33]. The particle swarm optimisation algorithm (PSO) and 

the weighted sum method (WSM) were employed to optimise the annual cooling, 

heating, and lighting electricity consumption [34]. Lin et al. [35] applied Tabu Search 

to optimise envelope configurations for an office building.  

Applying simulation-based optimisation methods frequently requires custom code 

development to implement an optimisation algorithm in programming language and 

link it to simulation software. To facilitate this process, simulation-based optimisation 

tools have been developed [17], which are reviewed in the next section. 

Despite the many studies on BOPs, the selection of the best optimisation algorithm 

remains an open question, since it is highly dependent on the specifics of the problem 

[36]. The performance evaluation of optimisation algorithms in solving BOPs has 

received much attention in order to identify which algorithm performs best for BOPs. 
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Wetter and Wright [37] compared the performance of GA and the Hooke–Jeeves (HJ) 

algorithm in minimising energy consumption of a building. Their results showed that 

the GA has a better performance than the HJ algorithm and the latter may also fall into 

a local optimum more easily. Zhou et al. [38] developed an optimization module 

integrated with EnergyPlus and compared the performance of Nelder Mead Simplex, 

Quasi Newton, SA and a hybrid algorithm including GA, Tabu search and Scatter 

search. It was observed that Nelder Mead Simplex is the best choice for optimising a 

three-floor office. Mahdavi and Mahattanatawe [39] compared Hill climbing 

algorithm with different restart strategies with SA algorithm for maximization of 

preferences for temperature and visual performance, and maximization energy and 

visual performance preferences. It was observed that Hill climbing algorithm 

performed better than SA. Wetter and Wright [24] compared the performance of nine 

different optimisation algorithms, including a gradient-based algorithm (Discrete 

Armijo gradient algorithm), direct search Algorithms (Coordinate search algorithm, 

HJ algorithm and Simplex algorithm of Nelder-Mead), genetic algorithm, two  

versions of particle swarm optimisation, and Hybrid Particle Swarm 

Optimisation/Hooke-Jeeves (PSO-HJ) algorithm, in solving simple and complex 

building models. It was found that the PSO-HJ achieved the largest energy reduction 

among all algorithms. Their results also showed that the GA was close to the optimal 

point with fewer simulations than PSO-HJ. In contrast, Nelder and Mead and Discrete 

Armijo gradient algorithms failed to find high-quality solutions. Wright and Ajlami 

[40] tested the robustness of the GA in selection of control parameters in an 

unconstrained BOP. It was found that the GA was not sensitive to the choice of its 

control parameters. 
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More recent comparative studies have also been conducted for BOPs. Tuhus-Dubrow 

and Krarti [6] compared the performance of GA and PSO, and found that the GA 

obtained the solutions that were close to PSO, with fewer building simulations. 

Another study investigated the performance of GA, PSO and Sequential Search 

technique, and indicated that the computational efforts for the Sequential Search 

technique are higher than others [9]. Hamdy et al. [41] compared the performance of 

three multi-objective optimisation algorithms, Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II), NSGA-II with active archive (aNSGA-II), and NSGA-II 

with a passive archive strategy (pNSGA-II). It was observed that aNSGA-II is more 

consistent in finding optimised solutions with a lower number of function evaluations 

than others. Hamdy et al. [42] compared the performance of seven multi-objective 

evolutionary algorithms with respect to different criteria. Their results indicated that 

two-phase optimisation using the genetic algorithm (PR_GA) can be considered the 

first choice for solving multi-objective BOPs. Bucking et al. [43] compared the 

performance of the modified Evolutionary Algorithm (EA) and Mutual Information 

Hybrid Evolutionary Algorithm (MIHEA) against Particle Swarm Optimisation with 

Inertial Weight (PSOIW) algorithm implemented in GenOpt. Results indicated that 

MIHEA finds better solutions with less computational time. Kämpf et al. [44] 

examined the performance of two hybrid algorithms called Covariance Matrix 

Adaptation Evolution Strategy with the Hybrid Differential Evolution (CMA-

ES/HDE) and PSO-HJ in minimising the five standard benchmark functions (i.e. 

Ackley, Rastrigin, Rosenbrock, Sphere functions and a highly-constrained function) 

as well as real buildings. It was observed that the performance of CMA-ES/HDE was 

better than the PSO-HJ in less than ten dimensions, while if the number of dimensions 

exceeded ten, the PSO-HJ performed better. Another study showed that CMA-ES with 
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sequential assessment can find the same results as GA in less time [45]. PSO showed 

a slightly better performance than GA in finding the optimised size for the components 

of solar thermal system for a single-family house [46]. Another study showed that a 

combination of GA with a modified simulated annealing algorithm can find more 

reliable results than solely the GA [47]. Recently, Futrell et al. [48] compared four 

optimisation algorithms in a building design for daylighting performance. They 

compared the Simplex Algorithms of NM, HJ, PSOIW, and PSO-HJ. They found that 

PSOIW found the best overall solution but PSO-HJ found solutions that are very close 

to the best solutions in less time. 

In Australia, the application of simulation-based optimisation was conducted by 

Bambrook et al. [49], who applied the PSO-HJ algorithm to optimise a simple house 

in Sydney to design a high performance house in which cooling and heating systems 

were no longer needed. Table 2-2 summarizes algorithm comparative studies reviewed 

here.  
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Table 2-2: Summary of algorithm comparative studies for BOPs 

Refs Year Algorithms Objective 
function(s) 

Recommended 
algorithm(s) Comments 

[37] 2003 GA and Hooke–Jeeves (HJ)  Energy GA Comparable number of 
function evaluations 

[38] 2003 
Nelder Mead Simplex, Quasi Newton, SA and 
a hybrid algorithm including GA, Tabu search 

and Scatter search 

Electricity 
costs 

Nelder Mead 
Simplex 

Long computational cost 
of hybrid algorithm 

[39] 2003 Hill climbing with different restart strategies 
and SA 

Visual 
performance, 
energy and 
temperature 

Hill climbing 
algorithm  

[24] 2004 
Discrete Armijo gradient algorithm , 

Coordinate search algorithm, HJ, Nelder-
Mead (NM), GA, PSO, PSO-HJ 

Energy PSO-HJ 

Fast convergence of GA, 
unrecommended 

algorithms: NM and 
discrete Armijo  

[40] 2005 GA with different parameter sets Energy GA GA is insensitive to its 
parameters 

[6] 2010 GA, PSO life-cycle 
cost PSO 

GA found solutions close 
to PSO with fewer 

building simulations 

[44] 2010 
Covariance Matrix Adaptation Evolution 

Strategy with the Hybrid Differential 
Evolution (CMA-ES/HDE) and PSO-HJ 

Energy CMA-ES/HDE 
PSO-HJ performs better 
for dimensions greater 

than 10  

[9] 2011 GA, PSO and Sequential Search technique. life cycle 
costs GA, PSO 

High computational time 
of Sequential Search 

approach 

[46]. 2012 PSO and GA 
Energy and 
cost (solar 
fraction) 

PSO PSO is slightly better 

[41] 2012 
Non-dominated Sorting GA (NSGA-II), 

NSGA-II with active archive (aNSGA-II), 
NSGA-II with a passive archive (pNSGA-II) 

Energy and  
life-cycle  cost aNSGA-II 

better repeatability of 
aNSGA-II and with high 

convergence 

[43] 2013 

Modified Evolutionary Algorithm (EA), 
Mutual Information Hybrid Evolutionary 
Algorithm (MIHEA), PSO with Inertial 

Weight (PSOIW) 

Electricity 
consumption MIHEA High convergence of 

both EAs  

[45]. 2014 CMA-ES with Sequential Assessment 
(CMAES-SA) and GA Energy CMAES-SA Less computational time 

of CMAES-SA 

[47] 2015 GA and hybrid GA with SA  Life-cycle 
cost GA-SA More reliability of GA-

SA  

[48] 2015 NM, HJ, PSOIW, and PSO-HJ. Daylighting 
performance PSOIW Competitive algorithm: 

PSO-HJ 

[42] 2016 

pNSGA-II, two-phase optimization using the 
GA (PR_GA), elitist non-dominated sorting 
evolution strategy (ENSES), evolutionary 
algorithm based on the concept of epsilon 
dominance (evMOGA), multi-objective 
particle swarm optimization (MOPSO),  

differential evolution algorithm (spMODE-II), 
and dragonfly algorithm (MODA) 

Energy and 
life-cycle  cost 

PR_GA 
 

Competitive algorithms: 
pNSGA-II, evMOGA 

and spMODE-II 
Uncompetitive 

algorithms: ENSES, 
MOPSO and MODA 
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2.2.1 Building optimization tools  

In this section, common optimisation tools which are mainly customised for 

BOPs and are based on the simulation-based optimisation method are reviewed and 

their main features are detailed.  

2.2.1.1 GenOpt 

This software was developed by Lawrence Berkeley National Laboratory and 

is a generic optimisation program that can be coupled with building simulation 

programs with input and output text files, such as TRNSYS, DOE-2, and EnergyPlus. 

The library of GenOpt contains different optimisation algorithms including the Golden 

Section and Fibonacci algorithms, the Discrete Armijo Gradient algorithm, the Nelder 

and Mead's Simplex algorithm, the Hooke–Jeeves, Coordinate Search, Particle Swarm 

Optimisation (PSO), and a hybrid PSO with the Hooke–Jeeves algorithm [50]. A 

drawback of the current version of GenOpt is that it does contain any multi-objective 

optimization algorithms. GenOpt, has been used in many studies [51-57]. 

2.2.1.2 BEopt 

This tool which was developed by National Renewable Energy Laboratory 

(NREL) uses EnergyPlus simulation engine to identify optimised building design. This 

tool has graphical interface which allows users to select predefined options in different 

categories. Various discrete variables in BEopt reflect realistic construction materials 

and practices. Simulation assumptions in the library of BEopt are based on the building 

America housing simulation protocols. This tool has been used by NREL researchers 

and others such as [58, 59]. Limited number of predefined building options is the 

limitation of this tool. 
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2.2.1.3 MOBO 

MOBO is an optimisation tool which can handle both single and multi-objective 

problems with continuous and discrete variables. This tool can be used with several 

building simulation software programs through text files such as IDA-ICE and 

TRNSYS. Mobo has a library of different types of optimisation algorithms such as 

NSGA-II, Hooke-Jeeves, Brute-Force and Random Search algorithms [60]. 

2.2.1.4 jEPlus: 

jEPlus is a tool which is able to manage and run large and complex parametric 

simulations using EnergyPlus software. This tool can be coupled with optimisation 

algorithms to work on different types of optimisation problems. jEPlus has been used 

in many studies as the parametric simulation tool [61, 62] and with an optimisation 

algorithm for BOPs [34]. 

An interview conducted among 28 international building optimization experts to select 

an optimisation tool for BOPs. It was found that GenOpt is mostly-used tools in BOPs 

[16, 17]. 

2.3 Surrogate Based Optimisation Methods  

 In many engineering applications, in spite of advances in computer capacity 

and speed, the high computational cost remains a key issue for design and optimisation 

[63, 64]. To relieve the computational burden, surrogate models, also known as Meta 

models, are commonly used. A surrogate model is a mathematical approximation of a 

system, which is created using data collected by simulations or experiments to describe 

the behaviour of the original system. There are a lot of methods used to construct a 

surrogate model of a system, such as Kriging, Artificial Neural Networks (ANN), 

Radial Basis Function (RBF), and Support Vector Regression (SVR) [65-67]. 
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Surrogate models have been widely used in the building science for different purposes 

such as design stage and operation phase (e.g. energy prediction and energy labelling) 

[20, 68-76]. For example, Neto and Fiorelli [74] compared the results of the neural 

network method and EnergyPlus with measured energy consumption. It was observed 

that both models are suitable for energy consumption forecast, but the neural network 

model is slightly more accurate than EnergyPlus. The major source of uncertainties in 

EnergyPlus predictions are related to lighting, equipment and occupancy schedules. 

Melo et al. [77] tested six different methods to generate surrogate models for building 

energy labelling, including multiple linear regression, multivariate adaptive regression 

splines, the Gaussian process, random forests, support vector machines and artificial 

neural networks. Results showed that the surrogate model generated by ANN has the 

best performance. It was also found that training time in SVR is almost six times more 

than ANN.  

However, the application of surrogate models in BOPs is largely unexplored. Romero 

et al. applied a numerical method using a finite volume method to calculate energy 

equations and used ANN, GA and SA to optimise building design parameters [78]. 

Magnier and Haghighat [19] used the integration of an ANN and NSGA-II to optimise 

building energy consumption and thermal comfort. The average relative errors of ANN 

prediction were obtained around 0.5% and 3.9% for the total energy consumption and 

PMV, respectively. They stated that the optimisation process took approximately three 

weeks, while if direct coupling between simulation software and GA was used, it 

would require ten years to complete the task. Bianchi [79] used the ANN and GA to 

optimise of building energy, thermal and visual comfort. Tresidder et al. [80] 

compared the optimisation results of building CO2 emissions using a Kriging surrogate 

model and the stand-alone GA. They found that optimisation using surrogate models 
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leads to finding more reliable optimal solutions with fewer sampling points. They also 

examined both the Kriging surrogate model and the stand-alone GA on multi-objective 

optimisation problems with discrete variables [81]. Their results indicated that the use 

of the Kriging surrogate model results in a significantly better approximation of the 

Pareto front if the number of simulations is limited. However, they also mentioned that 

more investigations are required to make this conclusion robust. Eisenhower et al. [82] 

applied the SVR to generate the surrogate models and then compared optimisation 

results with the results of software-in-the-loop. They concluded that the results of these 

methods are approximately equivalent (in terms of numerical quality). Gossard [83] 

used the ANN and NSGA-II to optimise the annual energy consumption and the 

summer comfort degree index in a building for two French climates. Gengembre et al. 

[84] optimised the life cycle cost of a single-zone building using a Kriging surrogate 

model. The results indicated that acceptable accuracy was achieved by the Kriging 

model at the reasonable computational time. Asadi [85] applied GA and ANN for the 

optimisation of the three objective functions: energy consumption, retrofit cost, and 

thermal discomfort hours, in a school building.  

2.3.1  Sample Selection Methods 

The performance of the surrogate models depends strongly on the number and 

quality of sample points collected by experiments or computer simulation. More 

sample points provide the surrogate model with more information, and consequently 

this leads to more accurate predictions but at a higher computational cost [64, 86]. 

Hence, the main challenge of constructing surrogate models is to achieve the highest 

prediction accuracy with the least computational cost. The process of determining the 

samples that will be used to estimate the surrogate is called Sample Selection. 
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The most widely used sample selection method is random sampling. In this method, 

sample points are randomly selected to train the surrogate model. Due to the random 

selection, some samples may contain less information and not be representative of the 

whole design space. Therefore, more sample points (and higher computational cost) 

should be added to the training dataset to construct a surrogate model with desired 

prediction accuracy.  

To address this trade-off, Active Learning methods have been developed with the aim 

of evaluating the “informative-ness” of the unlabelled samples and selecting the most 

informative samples through different query strategies. These strategies could be 

classified into six groups [87]: uncertainty sampling, query by committee (QBC), 

expected model change (expected gradient length), expected error reduction, variance 

reduction, and density weighted methods. Most studies that applied sample selection 

methods are in the context of classification problems [87], while a few studies used 

them in regression problems (i.e. function approximation problems).  

Krogh and Vedelsby [88] defined the ambiguity as the variation of the output of 

ensembles of neural networks over unlabeled data. They used the ambiguity to select 

new training data and reduce the generalisation error for the square-wave function. 

RayChaudhuri and Hamey [89] used ensembles of neural networks similar to [88] to 

reduce the generalisation error. However, they used random subsamples of a small 

amount of data to train the ensemble of neural networks. Burbidge et al. [90] 

investigated the performance of the committee-based approach for active learning in 

the one dimensional mathematical problem. Their experience showed that this 

approach only works when the model class is correctly specified and data are noise 

free. Cohn et al. [91] proposed a statistical active learning method and computed the 

approximation of variance for Gaussian mixture models, neural networks, and locally-
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weighted linear regression to reduce the generalisation error in the “Arm2D" problem. 

Yu et al. [92] proposed a passive sampling method based on geometric characteristics 

of data points in the feature space. They found that passive sampling outperformed 

random sampling and active learning based on predicted regression error for noisy 

datasets while active learning performed best for noiseless datasets. Douak et al. [93] 

developed three different active learning strategies for kernel ridge regression based 

on pool of repressors, Euclidean distance and residual regression for minimisation of 

prediction error for wind speed. Results showed that a smart collection of samples 

could improve the model’s prediction for wind speed problems. Zhao et al. [94] 

developed  ANN and SVM models for wind speed forecast with an active learning 

approach based on selecting samples with the higher Euclidean distance and lower 

cross-validation error. Results indicated that their proposed method could significantly 

reduce the number of training samples and ensure model accuracy. Recently, Verrelst 

et al. [95] applied different active learning methods to the biophysical variable retrieval 

problem. They compared random sampling with six active learning methods, including 

a variance-based pool of regressors, entropy query by bagging [96], residual regression 

active learning [93], Euclidean distance-based diversity, angle-based diversity [97], 

and cluster-based diversity [98]. Results showed all active learning methods 

outperformed random sampling.  

2.4 Uncertainty in Building Optimisation Problems  

In the vast majority of simulation and optimisation problems, building designers 

assume that building input parameters are deterministic (or perfectly known). 

However, in real building problems, especially at the early stages of building design, 

parameters are often highly uncertain. These uncertainties may arise from different 

sources, including uncertainties in the thermophysical properties of construction 
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materials and in weather data, lack of designers’ knowledge of building occupancy, 

occupant behaviour and appliance loads, and uncontrolled infiltration rates [99, 100]. 

These uncertainties cause a significant discrepancy between the predicted and actual 

building energy performance [101-103]. In Building Performance Simulation (BPS), 

the impact of uncertainty in building simulation assumptions has been investigated by 

a number of studies [99, 104-111]. For example, Silva [109] analysed the uncertainties 

in occupant behaviour and physical parameters for a residential building simulated by 

EnergyPlus software and found up to a 43.5% deviation in energy consumption.  

In contrast to BPS problems, studies considering uncertainty in BOPs are quite limited. 

Hoes et al. [112] proposed a building performance indicator based on uncertainty in 

the users’ behaviour to rank Pareto solutions to select the most robust solution. They 

used Monte Carlo Simulation and NSGA-II to calculate and minimise the mean value 

of building performance indicators. Bucking [113] applied Monte Carlo Simulation 

and an evolutionary algorithm to optimise energy consumption and life-cycle cost 

under economic uncertainty. To address the well-known issue of high computational 

cost for Monte Carlo Simulation, Ramallo-González et al. developed a Changing 

Environment Evolutionary Strategy (CEES) to optimise energy under uncertainty in 

occupant behaviour [114]. In this strategy, the algorithm’s populations are evaluated 

with a different environmental parameter at each generation. In another study, Hopfe 

et al. [100] developed a Kriging meta-model of building performance and used Monte 

Carlo Simulation to do optimisation under uncertainty. However, construction of a 

sufficiently accurate meta-model is a key factor in the performance of the overall 

surrogate-based optimisation problems (which was not discussed in [100]). This 

construction depends strongly on the samples that are used in training the meta-model 
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and the selection of free parameters, which have no generally accepted guidelines for 

their selection and require significant expertise and/or time to properly tune [115].  

In addition to the issue of high computational cost, probability models (e.g. for Monte 

Carlo simulation) require probabilistic distributions of parameters that may not be 

available, particularly in light of the fact that uncertainties may change during the 

building life time [100]. In such cases, scenario analysis (i.e. analysing the behaviour 

of the building under a number of different specific building assumptions)  may 

provide a complementary tool to enable uncertainty analysis when detailed 

distributional information is lacking [116]. Recently, Kotireddy et al. [117] applied 

scenario analysis and the minimax regret method as the measure of performance 

robustness to identify robust designs. The preferred robust design is selected based on 

performance robustness and optimal performance. 

2.5 Summary  

The application of both simulation-based optimisation and surrogate-based 

optimisation methods in buildings remains an active research area. However, both 

methods suffer from key issues to find optimal (or near optimal) solutions. Table 2-2 

shows the potential improvments for each method identified from the literature. 

• In simulation-based optimisation, the performance of the method depends 

strongly on the optimisation algorithm. This method requires hundreds to 

thousands of time-consuming building simulations to find near-optimal 

solutions. This high computational cost is likely the key reason why this 

approach remains impractical in the building industry. Different optimisation 

algorithms were applied to improve the performance of simulation-based 

optimisation methods in terms of optimality and reducing computational cost. 

Comparative studies indicated that Particle Swarm Optimisation with Inertia 
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Weight (PSOIW) and the hybrid PSO-HJ algorithms perform well on BOPs 

[43, 44, 46, 48], outperforming many other popular optimisation algorithms 

(e.g. GA).  

• Surrogate-based optimisation is promising, especially for optimisation of 

computationally expensive models [15]. However, the limited number of 

studies conducted so far have not explored how to construct surrogate models 

efficiently, and nor have they fully exploited their advantages in enabling 

optimisation improvements.  

• No systematic study has been conducted to quantify and evaluate the 

computational performance gains that may be expected using a surrogate 

approach. 

• ANNs are the most used surrogate models for both building energy prediction 

and optimisation problems, including many building studies [19, 20, 68-72, 77, 

79, 83, 85]. The performance of the surrogate method depends strongly on the 

number and quality of samples used to create the surrogate model. All studies 

for BOPs used the random sampling method, which suffers from extra 

computational cost for labelling non-informative samples. 

• For regression problems (surrogate models) the literature in other fields 

(particularly computer science) revealed that active learning methods based on 

“Query By Committee” (QBC) have shown promise to improve the efficiency 

of constructing surrogate models.  

• There is no study investigating the active learning methods for either building 

energy prediction or building optimisation problems.  

• A few studies considered uncertainty of building parameters (e.g. occupant 

behaviour) in BOPs. Current methods to address uncertainty are very time-
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consuming and often require probabilistic distributions of parameters. 

Coupling these methods to optimisation methods to find a robust solution 

causes BOPs to be computationally too expensive. 

• Very few studies applied optimisation methods for building design in 

Australia, and the potential of these methods for energy savings has not been 

fully explored.   
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Chapter 3: Building Simulation 

3.1 Overview  

In this chapter, the simulation of building energy performance is detailed and the 

selection and validation of case studies for optimisation are discussed. Section 3.2 

discusses building simulation software and Section 3.3 details two representative 

commercial buildings, which are used in this research as optimisation case studies. 

Finally, Section 3.4 presents the simulation results and validation of these building 

models.  

3.2 Building Simulation Software   

Building performance simulation tools play a key role in building design. There 

are several building energy simulation programs, such as EnergyPlus [118], 

TRNSYS [119], DesignBuilder [120] and IES-VE [121], which are widely used in 

industry and the scientific community due to their high capability and reliability. 

However, the best choice for a specific project depends on different factors, such as 

designer knowledge, client needs, required level of accuracy and simulation time [20]. 

For building optimisation problems (particularly those involving novel 

algorithms), building simulation software is coupled with an external program. Thus, 

the simulation software must have some specific features to be applicable for 

optimisation. The main features include (but not limited to):  

 Reading and writing ASCII text input and output files 

 Generating output with various types of formats  
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 Running simulation software in a batch process 

 Allowing parallel simulation runs 

 Enabling simulation of advanced HVAC systems 

 Calculating different thermal comfort metrics such as Predicted Mean Vote 

(PMV) and ASHRAE (Standard 55) 

 Simulating daylighting controls and calculating the effect of reduced 

artificial lighting on building loads  

 Being compatible with both Windows and Linux, which is necessary for 

high performance computing 

EnergyPlus, developed by the US Department of Energy, is whole building energy 

simulation software, which benefits from all aforesaid features. This software was 

selected as the first choice among building optimisation experts for BOPs [17]. 

Accordingly, EnergyPlus was selected as the building simulation software in this 

research. 

3.3 Building Modelling: Case Study Description   

In this research, two reference buildings called Type A and Type B, developed by 

the Australian Buildings Codes Board (ABCB), are used. Reference buildings aim to 

represent a typical building in the national building stock to ensure that results from 

energy analyses are representative [122]. Using reference buildings helps designers to 

understand how real buildings in a specific climate zone are likely to be affected by 

any energy saving measures. Thus, these buildings were considered as suitable case 

studies in this research. Moreover, ABCB reference buildings have been widely used 

in many studies [102, 123-133]. However, different simulation assumptions and input 
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values have been used in the literature, which has led to different building simulation 

results. In this research, the building configuration, parameters, and assumptions (e.g. 

internal loads) are as specified in the ABCB recommendations [102, 134, 135]. The 

details of these buildings are discussed in the following sections.  

3.3.1 Building Type A 

Building Type A is an office building (10 storey tower) with heavy-weight concrete 

construction and a gross floor area of 9985 m2. This building includes all features of 

real buildings, including multiple thermal zones, internal loads of occupancy, lighting, 

equipment, auxiliary service equipment and HVAC system. The template VAV system 

of the EnergyPlus was selected to model a variable air volume system with water-

cooled chiller (COP = 3.57) and the heating and cooling sizing factors are 1.25. The 

prototypes and details of building Type A are given in Figure 3.1, Table 3.1 and Table 

3.2. The schedules used for occupancy, lighting (limited control), equipment and 

HVAC working hours are the same as given by the National Australian Built 

Environment Rating System (NABERS) [129].  

 

Figure 3.1: Ten-storey building Type A (ABCB) [134, 135] 
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    Table 3-1: Building Type A construction details [134, 135] 

 Construction Materials Overall U-Value 
(W/m2K) 

Wall 
200 mm heavy weight concrete R1.5 

batts, 10mm plasterboard (absorption 
coefficient (AC) = 0.6) 

0.557 

Roof 
Metal deck, air gap, 150mm HW 

concrete, roof space, R2.0 batts, 13mm acoustic 
tiles (AC= 0.6) 

0.231 

Floors 175 mm concrete, carpet 2.7 cm 1.351 

Windows 6 mm clear glass 
(SHGC = 0.818, VT= 0.88) 5.89 

Window to 
wall ratio  38 %  

 

Table 3-2: Building geometry details and assumptions used in building modelling 

Parameters Values 

Total floor area (m2) 9985.6 

Geometry (m) 31.6 × 31.6 

Number of floors 10 

Floor to floor height (m) 3.6 

Floor to ceiling height (m) 2.7 

Lighting load 15 W/m2 

Equipment load 15 W/m2 

Lifts and auxiliary service 
equipment 1 W/m2 

Occupancy 0.1 Person/m2 

Temperature set-point 20-24 °C 

Temperature set-back 28 °C (18:00-07:00, business days) 

Infiltration 1 ACH outside HVAC operating hours, no 
infiltration during HVAC hours 

HVAC system VAV system, water cooled AC, Gas boiler, 
COP=3.57 (no heat recovery and economy cycle) 
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3.3.2  Building Type B 

Building Type B is a three-storey office building with heavy-weight concrete 

construction and a gross floor area of 2003.85 𝑚𝑚2. This building includes all features 

of real buildings including multiple thermal zones, internal loads of occupancy, 

lighting, equipment, auxiliary service equipment and HVAC system. The template 

VAV system of the EnergyPlus was selected to model a variable air volume system 

with water-cooled chiller (COP = 3.57) and the heating and cooling sizing factors are 

1.25. The details of building Type B are given in Figure 3.2, Table 3.3 and Table 3.4. 

The schedules used for occupancy, lighting (limited control), equipment and HVAC 

working hours were the same as given by NABERS [129].  

 

Figure 3.2: Three-storey building Type B (ABCB) [134, 135] 
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Table 3-3:Building construction details [134] 

Component Construction Materials U-Value 
(W/m2K) 

Wall 
200 mm heavy weight concrete R1.5 
batts, 10mm plasterboard (absorption 
coefficient=0.6) 

0.520 

Roof 

Metal deck, air gap, 150mm heavy 
weight concrete, roof space, R2.0 batts, 
13mm acoustic tiles (absorption 
coefficient=0.6) 

0.267 

Floors 175 mm concrete, carpet 2.7 cm 1.351 

Windows 
Window to wall ratio 

6 mm clear glass 
37.5 % (E & W faces), 15%  (N & S 
faces) 

5.89 

Overhang NA  

 

Table 3-4: Building geometry details and assumptions used in building simulation 
[134] 

Parameters Values 
Total floor area (m2) 2003.85 
Geometry (m) 36.5 × 18.3 
Number of floors 3 
Floor to floor height (m) 3.6 
Floor to ceiling height (m) 2.7 
Lighting load 15 W/m2 
Equipment load 15 W/m2 

Lifts and auxiliary service equipment 1 W/m2 

Occupancy 0.1 Person/m2 
Temperature set-point  20-24 °C 

Temperature set-back 28 °C (18:00-07:00, business 
days) 

Infiltration 
1 ACH outside HVAC operating 

hours, no infiltration during HVAC 
hours 
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3.4 Simulation Results Comparison   

Buildings Type A and Type B are theoretical buildings and therefore validation 

against measured energy consumption data is not possible. However, since the 

buildings are considered to be representative of generic office buildings, the simulation 

results were compared to the average state energy intensity for office buildings from 

[102] for four cities with diverse climates: Darwin, with hot humid summers and warm 

winters; Brisbane, with warm humid summers and mild winters; Melbourne with warm 

summers and cool winters; Hobart, with mild to warm summers and cold winters 

[124].  

 

Figure 3.3: Simulation results for both buildings Type A and Type B 

Figure 3.3 shows the simulation results for the annual energy consumption per 

unit floor area for both buildings Type A and Type B, and the average state energy 

intensity of office buildings. For all cities except Darwin, the simulation results of 

annual energy consumption are in close agreement with the corresponding state 

average (within one standard deviation of those reported [136]). In addition, for all 

cities, the simulation results of the present study are very close to the study conducted 
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by Daly et al. [102]. The discrepancy between simulation results and state average for 

Darwin was also reported in [102]. Some possible reasons for this discrepancy include: 

different building constructions in that climate, higher cooling set-points, differences 

in occupant behaviour [102], different cooling COPs and higher infiltration rates or 

these reference buildings may not be an appropriate representative of commercial 

buildings for Darwin. 

3.5 Summary  

In this chapter, two representative commercial buildings recommended by 

ABCB were chosen as case studies. The simulation of building energy performance 

was detailed and the simulation results were compared with state average (within one 

standard deviation) and another study. The comparison showed that simulation results 

are in close agreement with both of them. 
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Chapter 4: Simulation-Based Optimisation 
with Ant Colony Optimisation 

4.1 Overview  

Simulation-based optimisation, also known as software-in-the-loop, is the most 

commonly used method for BOPs. This method consists of three phases: pre-

processing, optimisation, and post-processing [15]. The pre-processing phase plays a 

significant role in the optimisation and mainly contains the formulation of the 

optimisation problem. In this phase, objective functions, problem constraints, 

optimisation variables, and an optimisation algorithm are determined. In addition, 

coupling the optimisation algorithm to building simulation software is done in this 

phase. In the optimisation phase, the main tasks are running the optimisation and 

monitoring convergence of optimisation. The post-processing is comprised of the 

interpretation of optimisation results.  

In this chapter, Ant Colony Optimisation is adapted and applied to BOPs for the first 

time, and benchmarked against state-of-the-art algorithms. This algorithm is selected 

because applying ACOR on mathematical test functions, such as Sphere, Tablet and 

Rosenbrock, showed that ACOR is an competitive algorithm in the family of 

metaheuristic algorithms, outperforming other metaheuristic algorithms such as GA in 

some test functions [137]. Moreover, ACOR has illustrated high efficiency in other 

domains [138-141]. However, its application in building optimisation problems has 

not been reported to date. 

This chapter is organised as follows: Section 4.2 details the problem statement and 

Section 4.3 details a platform to couple simulation software to an optimisation 

algorithm. Section 4.4 details the ant colony optimisation algorithm along with 
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benchmark optimisation algorithms. Finally, Section 4.5 presents the optimisation 

results. 

4.2 Problem Statement  

The building optimisation problem considered here can be formally stated as  

 
          min  𝑓𝑓(𝐱𝐱) 

subject to:  𝐱𝐱 ∈ 𝕏𝕏 ⊆ ℝN 4.1 

Where 𝑓𝑓(⋅):𝕏𝕏 → ℝ is the objective function, 𝕏𝕏 ⊂ ℝN is the feasible space, 𝐱𝐱 =

[x1, x2, … , xN]  is the vector of independent design variables. For the BOP considered 

here, the feasible design space is simply stated in terms of upper and lower bounds on 

parameters: −∞ < 𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖 < +∞, 𝑖𝑖 = 1,2, … ,𝑁𝑁 where ℓ𝑖𝑖 and 𝑢𝑢𝑖𝑖 are the lower 

bound and the upper bound of the variable i. Since the decision variable input ranges 

can be normalised, we may assume (without loss of generality) that ℓ = 0 and 𝑢𝑢 = 1.  

According to the research conducted among an international group of building 

optimisation experts, energy and cost have been identified as the most used objective 

functions, and systems and controls, and envelope variables as the most optimised 

variables in BOPs. However, the selection of the variable depends on the innovation 

of the project and the complexity of variable. Furthermore, thermal comfort and cost 

were defined as the main constrains [16, 17]. In this study, the objective function, 𝑓𝑓(⋅

), is the building annual end-use energy consumption (MJ/m2 Year), which is 

calculated by EnergyPlus [118], which can be written as follows:  
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𝑓𝑓(𝐱𝐱) = 𝐸𝐸𝑐𝑐(𝐱𝐱) + 𝐸𝐸𝑓𝑓(𝐱𝐱) + 𝐸𝐸𝑙𝑙(𝐱𝐱) + 𝐸𝐸𝑝𝑝(𝐱𝐱) + 𝐸𝐸ℎ(𝐱𝐱) + 𝐸𝐸𝑚𝑚(𝐱𝐱) 4.2 

where 𝐸𝐸𝑐𝑐  is the energy consumption for space cooling (MJ/m2 Year), 𝐸𝐸𝑓𝑓 is the energy 

consumption of the supply and return fans of HVAC system (MJ/m2 Year), 𝐸𝐸𝑙𝑙  is the 

energy consumption of lighting (MJ/m2 Year), 𝐸𝐸𝑝𝑝 is the energy consumption of 

pumps (MJ/m2 Year), 𝐸𝐸ℎ is the energy consumption for space heating (MJ/

m2 Year) and 𝐸𝐸𝑚𝑚 is the energy consumption of both interior equipment and heat 

rejection1(MJ/m2 Year).  

4.3 Development of an Automatic Optimisation Platform   

Simulation-based optimisation is a complex task that frequently requires 

hundreds to thousands of building simulations to find the optimal (or near optimal) 

solution. Therefore, a platform is needed to control the whole optimisation process. 

Some software tools that do simulation-based optimisation (e.g. GenOpt), however, 

are limited to predefined optimisation algorithms. Thus, in order to evaluate the 

performance of new optimisation algorithms, a new simulation-optimisation platform 

is required, which has the maximum flexibility to implement custom optimisation 

algorithms. For this purpose, MATLAB was selected to generate and analyse 

EnergyPlus files. A script in MATLAB was developed to control the optimisation 

process. This script is able to read and write text files, call EnergyPlus, and evaluate 

the objective function. The data exchange between this script and EnergyPlus is done 

through text files. In each iteration during the optimisation process, the optimisation 

algorithm generates a new solution and calls EnergyPlus to simulate it. The MATLAB 

                                                 
 
1 For the HVAC system considered, heat rejection is the energy consumption of cooling tower fan. 
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script reads the EnergyPlus output text file, extracts relevant quantities, and evaluates 

the values of objective functions. According to this evaluation, the optimisation 

algorithm creates a new solution to reduce objective function and calls EnergyPlus 

again. This process is repeated until the convergence criterion is met. Figure 4.1 

outlines this process. This simulation-optimisation platform serves as a basis for 

testing and developing simulation-in-the-loop optimisation. In addition, the platform 

was adapted to address the sample selection problem, which is discussed in Chapter 7.  

 

 

MATLAB           
Simulation-Optimisation Platform: 

Read EnergyPlus Output File 
Evaluate Objective Function 

  Adjust Design 
 

Weather File + Input File 

 

 
Simulation Software  

(EnergyPlus) 
 

Building Energy Consumption  
 

 
Initial Design 

 

Output 
    

Generate new design 
    

4.4 Optimisation Algorithm Development  

Metaheuristic optimisation algorithms are often the first choice for BOPs due to 

discontinuities and the nonlinear thermal behaviour of buildings [15, 17, 21]. In this 

research, Ant Colony Optimisation for continuous domain (ACOR) was developed and 

its results were compared against benchmark algorithms. The next section explains the 

details of this algorithm. 

    

Figure 4.1: Simulation- optimisation platform 
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4.4.1  Ant Colony Optimisation Algorithm  

Ant Colony Optimisation (ACO) is a metaheuristic algorithm that was inspired 

by observations of ant behaviour. This algorithm was first designed to solve discrete 

optimisation problems and later extended to continuous variables [137, 142]. This 

extension, called Ant Colony Optimisation for continuous domain (ACOR) [137], was 

employed to optimise building energy performance. A strategy to deal with boundary 

constraints was added to the original ACOR algorithm in this research. 

ACOR operates on a solution archive, which is shown in Figure 4.2. This archive 

contains the values of the 𝑁𝑁 decision variables 𝐱𝐱𝒋𝒋 = �𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑁𝑁� and the associated 

objective function values 𝑓𝑓�𝐱𝐱𝒋𝒋�, obtained by simulating the building to obtain the 

annual energy consumption. Solutions in the archive are sorted from lowest to highest 

objective values, i.e.  

𝑓𝑓(𝐱𝐱1) ≤  𝑓𝑓(𝐱𝐱2) ≤  …  ≤  𝑓𝑓�𝐱𝐱𝑗𝑗� ≤  …  ≤  𝑓𝑓(𝐱𝐱𝑀𝑀) 4.3 

 

𝑥𝑥11  𝑥𝑥12 … 𝑥𝑥1𝑖𝑖  … 𝑥𝑥1𝑁𝑁 
 

𝑓𝑓(𝐱𝐱1) 𝜔𝜔1 

𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑖𝑖  … 𝑥𝑥2𝑁𝑁  𝑓𝑓(𝐱𝐱2) 𝜔𝜔2 

⋮ ⋮ … ⋮ ⋮ ⋮  ⋮ ⋮ 

𝑥𝑥𝑗𝑗1 𝑥𝑥𝑗𝑗2 … 𝑥𝑥𝑗𝑗𝑖𝑖  … 𝑥𝑥𝑗𝑗𝑁𝑁  𝑓𝑓(𝐱𝐱𝑗𝑗) 𝜔𝜔𝑗𝑗 

⋮ ⋮ ⋱ ⋮ ⋮ ⋮  ⋮ ⋮ 

𝑥𝑥𝑀𝑀1  𝑥𝑥𝑀𝑀2  … 𝑥𝑥𝑀𝑀𝑖𝑖  … 𝑥𝑥𝑀𝑀𝑁𝑁   𝑓𝑓(𝐱𝐱𝑀𝑀) 𝜔𝜔𝑀𝑀 

Figure 4.2: Solution archive for ACOR  (adapted from [137]) 

New candidate solutions are generated according to a Gaussian kernel probability 

density function (PDF) based on the solutions in the archive  
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𝐺𝐺𝑖𝑖(𝑥𝑥) = �𝜔𝜔𝑗𝑗

𝑀𝑀

𝑗𝑗=1

𝑔𝑔𝑗𝑗𝑖𝑖(𝑥𝑥) = �𝜔𝜔𝑗𝑗
1

𝜎𝜎𝑗𝑗𝑖𝑖  √2𝜋𝜋
 𝑒𝑒
−
�𝑥𝑥−𝜇𝜇𝑗𝑗

𝑖𝑖�
2

2𝜎𝜎𝑗𝑗
𝑖𝑖2

 
𝑀𝑀

𝑗𝑗=1

 4.4 

where 𝐺𝐺𝑖𝑖(𝑥𝑥) is the Gaussian kernel for the 𝑖𝑖th dimension of the solution, 𝑔𝑔𝑗𝑗𝑖𝑖(𝑥𝑥) is the 

𝑗𝑗th sub-Gaussian function for the 𝑖𝑖th dimension while 𝜇𝜇𝑗𝑗𝑖𝑖  and 𝜎𝜎𝑗𝑗𝑖𝑖  are the 𝑗𝑗th 

dimensional mean value and the standard deviation, respectively. The weights 𝜔𝜔𝑗𝑗 are 

set so that solutions with lower objective values are preferred, since they likely indicate 

neighbourhoods where good solutions may be found. The weights are assigned based 

on the position of a solution in the archive 

 

𝜔𝜔𝑗𝑗 =
1

𝑞𝑞𝑞𝑞 √2𝜋𝜋
 𝑒𝑒
−(𝑗𝑗−1)2
2𝑞𝑞2𝑀𝑀2     4.5 

where 𝑞𝑞 is a free parameter of the algorithm, which controls how sharply the weights 

decrease with the archive index 𝑗𝑗. Low values of 𝑞𝑞 increase the weights of the best 

solutions relative to the other solutions in the archive.  

The mean and standard deviation of the sub-Gaussians are also set, based on the 

archive solutions 

𝜇𝜇𝑗𝑗𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑖𝑖 4.6 

𝜎𝜎𝑗𝑗𝑖𝑖 = 𝜉𝜉�
�𝑥𝑥ℓ𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖�
𝑞𝑞 − 1

𝑀𝑀

ℓ=1

 
4.7 

In other words, the standard deviation is set according to the average distance of 𝐱𝐱𝑗𝑗 

from the other 𝑞𝑞 − 1 solutions in the archive along dimension 𝑖𝑖 in the parameter space. 

The free parameter 𝜉𝜉 is simply a scaling factor, which allows users to set the percentage 

of this average. 
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The new candidate solutions are generated according to the distribution in Eq. 

4.8 via a two-stage process. First, a solution from the archive is randomly selected with 

probability 

𝑃𝑃𝑗𝑗 =
𝜔𝜔𝑗𝑗

∑ 𝜔𝜔𝑟𝑟𝑀𝑀
𝑟𝑟=1

 
4.9 

Obviously, it is more probable that solutions with higher 𝜔𝜔𝑗𝑗 will be selected. A new 

candidate solution, 𝐱𝐱� is randomly generated according to the component-wise 

probability density functions 

𝑔𝑔𝑗𝑗𝑖𝑖�𝑥𝑥�𝑖𝑖� =
1

𝜎𝜎j𝑖𝑖√2𝜋𝜋
𝑒𝑒
−
�𝑥𝑥�𝑖𝑖−𝜇𝜇j

𝑖𝑖�
2

2𝜎𝜎j
𝑖𝑖2

 
                  𝑖𝑖 = 1,2, … ,𝑁𝑁        4.10 

where 𝑗𝑗 is the selected solution from the archive. The objective value of this solution 

is then evaluated and the generation procedure repeats until 𝑚𝑚 candidate solutions are 

generated. The archive is then updated by selecting the best 𝑞𝑞 solutions from the 𝑞𝑞 +

𝑚𝑚 solutions. To conduct the optimisation with ACOR, all variables are normalised 

between zero and one (ℓ𝑖𝑖 = 0 and 𝑢𝑢𝑖𝑖 = 1). However, during the generation of new 

solutions, a variable (𝑥𝑥𝑖𝑖) may violate the domain boundary constraint. If this occurs, 

𝑥𝑥𝑖𝑖 is repaired as follows: 

if  𝑥𝑥𝑖𝑖 < 0 →     𝑥𝑥𝑖𝑖 = |𝑥𝑥𝑖𝑖|   

if  𝑥𝑥𝑖𝑖 > 1 →     𝑥𝑥𝑖𝑖 = 1 − (𝑥𝑥𝑖𝑖 − 𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥𝑖𝑖) ) 4.11 

 

The ACOR algorithm is summarised below. 

0. Select values for the parameters 𝑞𝑞, 𝜉𝜉, 𝑞𝑞, 𝑚𝑚 ≤ 𝑞𝑞 
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1. Initialise. Randomly generate 𝐱𝐱𝑗𝑗  𝑗𝑗 = 1,2, … ,𝑞𝑞 according to component-wise 

uniform distributions2 between the upper and lower bounds. Compute the 

objective values. 

2. Sort solutions in ascending order according to their objective values so that Eq. 

4.3 is satisfied. 

3. Calculate weights according to Eq. 4.5. 

4. Generate a new solution.  

a. Select a solution 𝑗𝑗 from the archive with probabilities from Eq. 4.9 

b. Generate a solution according to Eq. 4.10 

c. Adjust any variable values violating constraints according to Eq. 4.11 

5. Repeat step (4) 𝑚𝑚 times. 

6. Evaluate objectives of 𝑚𝑚 new solutions. 

7. Select the best 𝑞𝑞 solutions from the 𝑞𝑞 + 𝑚𝑚 solutions available. 

8. Check stopping criteria. If they are not satisfied, return to 2. 

A key challenge in the application of any optimisation algorithm is striking the 

proper balance between exploration of the parameter space and intensification of the 

search near quality solutions. In ACOR this behaviour is controlled using the 

parameters 𝑞𝑞 and 𝜉𝜉. Smaller values of 𝑞𝑞 promote intensification by assigning relatively 

large weights to better solutions in the archive and thus generating more candidate 

solutions in the neighbourhood of the best solutions. Larger values of 𝑞𝑞 increase 

exploration, by assigning more uniform weights to solutions in the archive. The 

parameter 𝜉𝜉 is a normalised width of the sub-Gaussians, in which its higher values 

                                                 
 
2 One could also use a space-filling algorithm (e.g. Latin Hypercube) to conduct this step. 
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promote increased exploration around a given solution, while its lower values increase 

intensification near it. 

4.4.2 Benchmark Algorithms   

Particle swarm-based algorithms were selected as benchmark metaheuristic 

algorithms, as the literature review revealed their efficiency for BOPs (see Section 2.2 

for more discussion). In addition, the NM algorithm was also selected as a benchmark 

direct search algorithm. These algorithms are detailed in this section. 

4.4.2.1 Particle Swarm Optimisation  

The selected benchmark algorithms are both based on Particle Swarm 

Optimisation (PSO), which is inspired by the social behaviour of birds. PSO is a 

metaheuristic optimisation algorithm introduced in [143], which seeks the optimum 

solution by changing the position and velocities of “particles” (which represent 

particular values of the building parameters in this study).  

The first benchmark algorithm will be Particle Swarm Optimisation with Inertia 

Weight (PSOIW), which was developed to improve the performance of the original 

PSO by better controlling the balance between global and local searching [144, 145]. 

In PSOIW, the velocity and position of a particle are determined as follows:  

𝐯𝐯𝑖𝑖(𝑘𝑘 + 1) =  𝜔𝜔(𝑘𝑘)𝐯𝐯𝑖𝑖(𝑘𝑘) + 𝑐𝑐1𝜌𝜌1(𝑘𝑘)(𝐩𝐩𝑙𝑙,𝑖𝑖(𝑘𝑘) − 𝐱𝐱𝑖𝑖(𝑘𝑘)) + 𝑐𝑐2𝜌𝜌2(𝑘𝑘)(𝐩𝐩𝑔𝑔,𝑖𝑖(𝑘𝑘)

− 𝐱𝐱𝑖𝑖(𝑘𝑘))  4.12 

𝐱𝐱𝑖𝑖(𝑘𝑘 + 1) =  𝐱𝐱𝑖𝑖(𝑘𝑘) + 𝐯𝐯𝑖𝑖(𝑘𝑘 + 1) 
4.13 

where 𝐱𝐱𝑖𝑖 is the position of 𝑖𝑖th particle, 𝑘𝑘 is the generation number, 𝐯𝐯𝑖𝑖 is the particle 

velocity, 𝜌𝜌1 and 𝜌𝜌2 are uniformly distributed random numbers. The variable  𝐩𝐩𝑙𝑙,𝑖𝑖(𝑘𝑘) is 
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the position of the particle with the best objective value observed so far for particle 𝑖𝑖, 

𝐩𝐩𝑔𝑔,𝑖𝑖(𝑘𝑘) is the position or the particle with the best objective value so far3, 𝜔𝜔(𝑘𝑘) is a 

non-increasing inertia weight, and 𝑐𝑐1 and 𝑐𝑐2 are algorithm parameters that control the 

relative influence of the global and local optima on the particle velocity update in Eq. 

4.13.The inertia weight is computed as follows: 

𝜔𝜔(𝑘𝑘) = 𝜔𝜔0 −
𝑘𝑘
𝐾𝐾

 (𝜔𝜔0 −  𝜔𝜔1) 4.14 

where 𝜔𝜔0 ∈ ℝ  is the initial inertia weight, 𝜔𝜔1 ∈ ℝ  is the inertia weight for the last 

generation (0 ≤ 𝜔𝜔1 ≤ 𝜔𝜔0), and 𝐾𝐾 ∈ 𝑁𝑁 is the maximum number of generations. The 

PSOIW algorithm is summarised below [144, 145]. 

PSOIW Algorithm 

0. Select values of algorithm parameters (𝑐𝑐1 and 𝑐𝑐2), number of particles 𝑛𝑛𝑃𝑃 ∈

N and number of generations 𝑛𝑛𝐺𝐺 ∈ N  

1. Initialise particles (𝐱𝐱𝑖𝑖) and velocities (𝐯𝐯𝑖𝑖) 

2. Evaluate the objective function values of each of the particles and determine 

the global best particle (𝐩𝐩𝑔𝑔,𝑖𝑖(𝑘𝑘 = 0)) 

3. Compute the inertia weight 𝜔𝜔(𝑘𝑘) (Eq. 4.14) 

4. Update the particles’ velocity {𝐯𝐯𝑖𝑖(𝑘𝑘 +  1)}𝑖𝑖=1
𝑛𝑛𝑝𝑝  

5. Update the particles’ location {𝑥𝑥𝑖𝑖(𝑘𝑘 +  1)}𝑖𝑖=1
𝑛𝑛𝑝𝑝  

6. For 𝑖𝑖 ∈  {1, . . . , 𝑛𝑛𝑃𝑃 }, determine the local best particles (𝐩𝐩𝑙𝑙,𝑖𝑖(𝑘𝑘)) and the 

global best particle (𝐩𝐩𝑙𝑙,𝑖𝑖(𝑘𝑘)) 

                                                 
 
3 Actually, the 𝐩𝐩𝑔𝑔,𝑖𝑖 is the best objective found amongst the particles in a neighbourhood of particle 𝑖𝑖, 
which could potentially be all particles. 
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7. Check the stopping criterion (𝑘𝑘 =  𝑛𝑛𝐺𝐺). If it is not satisfied, replace 𝑘𝑘 

by 𝑘𝑘 +  1, and go to Step 3  

 

4.4.2.2 Hybrid Particle Swarm Optimisation and Hooke-Jeeves Algorithm  

The next benchmark algorithm is the hybrid PSO-HJ algorithm. PSO (as detailed 

in the previous section) searches globally to find near-optimal solutions and then 

Hooke-Jeeves (HJ) searches locally to refine the solutions. PSO stops in this hybrid 

algorithm after a finite number of iterations or generations and then Hooke-Jeeves 

refines the PSO solution and terminates when no improvement is found [24]. The next 

section details the Hooke-Jeeves algorithm. 

4.4.2.2.1 Hooke-Jeeves Algorithm  

The Hooke-Jeeves algorithm is a member of the family of pattern search 

methods [146]. This algorithm comprises a combination of exploratory moves and 

pattern moves. An exploratory move aims to find the best point around the current 

point. In this move, first a base point, 𝐱𝐱𝑏𝑏𝑘𝑘 = �𝑥𝑥1𝑘𝑘 , 𝑥𝑥2𝑘𝑘 , . . 𝑥𝑥𝑛𝑛𝑘𝑘�, is selected, and then each 

variable (𝑥𝑥𝑖𝑖𝑘𝑘) is perturbed by a small amount (𝑥𝑥𝑖𝑖𝑘𝑘 ± 𝛿𝛿), and the objective function for 

a new point is evaluated. If the objective function is improved, the exploratory move 

is successful, and a new base point is reached. Otherwise, step length (𝛿𝛿) is reduced 

and the procedure is repeated. After exploratory moves, pattern moves are performed. 

In pattern moves, a new point is found using the current base point (best point found 

so far) and previous base point as follows: 

𝐱𝐱𝑏𝑏𝑘𝑘+2 = 𝐱𝐱𝑏𝑏𝑘𝑘 + (𝐱𝐱𝑏𝑏𝑘𝑘+1 −  𝐱𝐱𝑏𝑏𝑘𝑘) 4.15 
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where  𝐱𝐱𝑏𝑏𝑘𝑘+2 is temporary base point for a new exploratory move. The Hooke-Jeeves 

algorithm is summarised as follows: 

Hooke-Jeeves Algorithm 

0. Select the initial base point, the increments (𝛿𝛿), a termination 

parameter (𝜀𝜀 > 0), and step reduction factor 𝛼𝛼 > 1.  

1.  Perform exploratory moves for each variable. If the objective 

function’s value is improved, go to 2. Otherwise, go to 3. 

2. Perform pattern moves (Eq. 4.15). If the new point is found, set it as a 

new base point ( 𝐱𝐱𝑏𝑏𝑘𝑘+2). Go to 1 whatever the outcome is. 

3. Check the stopping criterion (𝛿𝛿 < 𝜀𝜀). If not satisfied, set 𝛿𝛿 =  𝛿𝛿 𝛼𝛼�  and 

go to 1.  

4.4.2.3 Nelder-Mead Algorithm 

The last benchmark algorithm is the Nelder-Mead (NM) algorithm [147], which is a 

popular direct search method and can be applied for nonlinear optimisation problems. 

In a problem with 𝑛𝑛 variables, this algorithm generates 𝑛𝑛 + 1 vertices 

( 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛, 𝐱𝐱𝑛𝑛+1.) to construct a simplex (i.e. a triangle with two variables) and 

then moves or reshapes this simplex to find the better solutions. To generate new 

vertices in a minimisation problem, the NM algorithm calculates the value of objective 

function associated with each vertex and replaces the vertex with the highest value of 

objective function (worst vertex) with a new vertex through a number of operations 

and using the centroid of the current simplex.  

The algorithm includes three main operations: reflection, contraction of the simplex 

and expansion of the simplex. New vertices are generally constructed by reflecting the 

worst vertex to a new vertex. Additional mechanisms including expansion of the 

simplex and contraction of the simplex may be performed depending on the function’s 
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value of reflected vertex. The termination criterion is to check whether any orthogonal 

step leads to a further improvement of the objective function. As this algorithm may 

fail to converge, starting from different initial points could improve its efficiency [48]. 

The Nelder-Mead algorithm is summarised as follows: 
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Nelder- Mead  

1. Compute the corresponding objective function for each point and sort points from 

the best ( 𝐱𝐱𝟏𝟏) to the worst ( 𝐱𝐱n+1) as follows: 

𝑓𝑓( 𝐱𝐱1) ≤ 𝑓𝑓( 𝐱𝐱2) … ≤ 𝑓𝑓( 𝐱𝐱n) ≤ 𝑓𝑓( 𝐱𝐱n+1) 

2. Calculate the centroid of all points except the worst point ( 𝐱𝐱n+1): 

𝐱𝐱� =  
1
𝑛𝑛
�𝐱𝐱i

n

i=1

 

3. Compute the reflection of the worst point (𝐱𝐱n+1) as follows: 
𝐱𝐱r =   𝐱𝐱�  +  𝛼𝛼( 𝐱𝐱�  −  𝐱𝐱n+1) 

where 𝛼𝛼 is the reflection coefficient. Then, evaluate 𝑓𝑓(𝐱𝐱r).  If  𝑓𝑓(𝐱𝐱1) ≤ 𝑓𝑓(𝐱𝐱r) <

𝑓𝑓(𝐱𝐱n), replace  𝐱𝐱n+1 with 𝐱𝐱r . Then go to 1. 

4. If 𝑓𝑓(𝐱𝐱r) < 𝑓𝑓(𝐱𝐱1), compute the expansion point  𝐱𝐱𝒆𝒆  as follows: 

𝐱𝐱e =  𝐱𝐱� + 𝛾𝛾(𝐱𝐱r −  𝐱𝐱�) 

where 𝛾𝛾 is the expansion coefficient. Then, evaluate 𝑓𝑓(𝐱𝐱e). If  𝑓𝑓(𝐱𝐱e) < 𝑓𝑓(𝐱𝐱r), 

replace  𝐱𝐱n+1 with  𝐱𝐱e, otherwise replace  𝐱𝐱n+1 with  𝐱𝐱r . Then go to 1. 

5. If  𝑓𝑓(𝐱𝐱n) < 𝑓𝑓(𝐱𝐱r) < 𝑓𝑓(𝐱𝐱n+1), compute the contraction point  

𝐱𝐱c =  𝐱𝐱� + 𝛽𝛽(𝐱𝐱r −  𝐱𝐱�) 

where 𝛽𝛽 is the contraction coefficient. Then, evaluate 𝑓𝑓(𝐱𝐱c). If  𝑓𝑓(𝐱𝐱c) ≤ 𝑓𝑓(𝐱𝐱n+1), 

replace  𝐱𝐱n+1 with 𝐱𝐱c and go to 1. Otherwise go to 6. 

6. If  𝑓𝑓(𝐱𝐱r) ≥ 𝑓𝑓(𝐱𝐱n+1), compute the contraction point  𝐱𝐱c  

𝐱𝐱c =  𝐱𝐱� + 𝛽𝛽(𝐱𝐱n+1 −  𝐱𝐱�) 

Evaluate 𝑓𝑓(𝐱𝐱c). If 𝑓𝑓(𝐱𝐱c) ≤ 𝑓𝑓(𝐱𝐱n+1), replace  𝐱𝐱n+1 with 𝐱𝐱c , and go to 1. 

Otherwise go to 7. 

7. 𝐱𝐱i = 𝐱𝐱1+𝐱𝐱i
𝟐𝟐

,  for 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 1. Then go to 8. 

8. If the convergence criteria are not met, return to 1. 
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4.5 Results  

The simulation-based optimisation methods were applied to building Type A in four 

diverse climates: Darwin, Brisbane, Melbourne and Hobart. Two different scenarios 

of this building are used for comparison of results. Scenario A is Building Type A as 

specified. The second scenario, Scenario B, is identical to Scenario A, but adds some 

energy efficiency measures. ABCB recommended building Type A as the 

representative of large commercial buildings in Australia [134, 135]. However, the 

original ABCB document was published in 2002. Therefore, it is expected that some 

energy efficiency measures have been applied to existing buildings over time. ABCB 

has also introduced many effective retrofit strategies to improve energy efficiency 

[148]. Some of these measures have been applied to simulation of this building as well 

such upgrading windows to the higher efficiency windows [128, 131, 149], shading 

installation [149], and lighting control system [128]. Therefore, four energy efficiency 

measures were considered in scenario B: 1) additional (0.5 meter) overhangs above 

windows; 2) double-pane windows (U =  2.678 W
m2 K,  Solar Heat Gain Coefficient 

(SHGC) = 0.427 and Visible Transmittance (VT)=  0.308)  instead of single-pane 

windows; 3) using daylighting control for each perimeter zone with one reference point 

with 320 lux set point at a height of 0.8 (𝑚𝑚) from the floor and continuous lighting 

control (minimum electric power and light output =  0); and 4) removing temperature 

set back.  

The objective function is to minimise the annual energy consumption of the building 

(Eq. 4.2) with respect to 15 variables listed in Table 4.1. The number of variables was 

selected as in [15], and the type and feasible search intervals were determined 

according to other similar studies [15, 17, 24, 40, 43-45]. It is worth noting that the 
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inclusion of (likely) non-influential variables (e.g. roof emissivity) is informative for 

benchmarking optimisation algorithms as it shows how the algorithm handles them. 

To conduct the building optimisation with benchmark algorithms, GenOpt 

optimisation software was used to perform optimisation with NM, PSOIW and PSO-

HJ algorithms [150]. Ten optimisation runs of each method were conducted for each 

city. A High Performance Computing (HPC) cluster was used since between 3000 and 

4600 building simulations were required for each run. The time required for each run 

with EnergyPlus 8.1.0 was between three and five days. 

In order to provide a fair comparison among the different optimisation algorithms, the 

number of function evaluations (simulations) to achieve the optimised result was 

compared. In the hybrid PSO-HJ algorithm, PSO stops after the pre-defined number 

of iterations (3000 building simulations). However, Hooke-Jeeves terminates when 

no improvement is found (not after a set number of iterations). Thus, the number of 

simulations for each run was set in the following way. At first, the PSO-HJ algorithm 

was run to completion and the number of function evaluations was calculated. This 

number was considered as the stopping criterion for ACORs, NM and PSOIW (though 

the exact number of function evaluations will vary slightly due to the specifics of each 

algorithm).  

An important factor in optimisation algorithm performance is the values for the free 

parameters. The parameters used in NM are those recommended in [24] and are shown 

in Table 4.2. The parameters used in the PSOIW and PSO-HJ algorithms are shown in 

Table 4.3. These parameters were set based on recommendations from previous studies 

that analysed PSO performance on benchmark functions and BOPs [44, 151]. The 

values for inertia weight in PSOIW and the values of parameters in HJ algorithm 
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selected here were recommended by [24]. Parameters used in the ACOR recommended 

in [137] and are also shown inTable 4.4.   

Table 4-1: Optimisation variables and their ranges 

Variables Description Variable Range 

X1 Roof emissivity  [0.5-0.9] 

X2 Roof solar absorptance  [0.3-0.85] 

X3 Wall insulation (cm) [1-10] 

X4 Wall solar absorptance [0.3-0.9] 

X5 East window height (m) [0.5-1.5] 

X6 North window height (m) [0.5-1.5] 

X7 South window height (m) [0.5-1.5] 

X8 West window height (m) [0.5-1.5] 

X9 East overhang depth (m) [0-1] 

X10 North overhang depth (m) [0-1] 

X11 South overhang depth (m) [0-1] 

X12 West overhang depth (m) [0-1] 

X13 Heating setpoint (°C) [18-22] 

X14 Cooling setpoint (°C) [23-27] 

X15 Building orientation (degree) [0-45] 

 
Table 4-2: Parameters used for NM 

NM parameters Value 

Accuracy 0.01 

Step size factor 0.1 

Block restart check 10 

Modify stopping criterion TRUE 
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Table 4-3: Parameters used for PSOIW and PSO-HJ 

Parameters PSOIW PSO-HJ 

Topology Von Neumann Von Neumann 

Number of particles 100 100 

Cognitive acceleration 2.05 2.05 

Social acceleration 2.05 2.05 

Constriction gain - 1 

Max velocity gain 0.2 0.2 

Initial inertia weight 1.0 - 

Final inertia weight 0 - 

Mesh size divider - 2 

Initial mesh size exponent - 0 

Mesh size exponent increment - 1 

Number of step reductions - 4 

 

Table 4-4: Parameters used for ACOR (1) and ACOR (2) 

Parameters ACOR (1) ACOR (2) 

No. of new solutions used in 

each iteration (ants) 
5 5 

𝑞𝑞 parameter 0.0001 0.1 

Speed of convergence (𝜉𝜉) 0.85 0.85 

Archive size 50 50 

 

The optimisation results are presented in Table 4.5. The normalised energy 

consumption per unit floor area is presented to provide an easier comparison of results. 

Table 4.5 shows the best parameter sets among all ten runs for each algorithm in each 

city. For Brisbane, Hobart and Melbourne, the best solutions were obtained by ACOR 
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(1) after  3468, 4171 and 3372 building simulations, respectively. ACOR (2) found 

the best solution for Darwin after 3519 building simulations. In contrast, PSOIW 

found the worst solution for Hobart and Darwin after 3800 and 3600 building 

simulations, respectively. Likewise, NM found the worst solutions for Brisbane and 

Melbourne, respectively.  

Table 4.5 also shows that the optimised building orientations are approximately zero 

degrees for Darwin, Hobart and Melbourne and almost ten degrees relative to North 

(clockwise) for Brisbane. For all cities, the optimum wall has the minimum solar 

absorptance, and best roof has the maximum emissivity with minimum solar 

absorptance. The optimised wall insulation thickness is 1 cm (𝑈𝑈𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙  = 1.88 W/m2K). 

The algorithm’s selection of the minimum allowable insulation thickness can be 

explained as follows. The HVAC system operates only during the daytime and the 

internal loads are fairly high. Due to this combination of usage factors and the 

relatively mild Australian climates, the dominant mode of operation of the HVAC 

system is cooling, even in winter. Therefore, increasing the insulation thickness will 

lead to higher cooling loads in winter months, which more than offsets any reductions 

in the cooling load in the summer months [152]. For example, if the optimised 

insulation thickness increases 1 cm (10% of the allowable range), the annual cooling 

loads increase 33 (GJ), 11.35 (GJ), 21 (GJ) and 16 (GJ) for Brisbane, Darwin, Hobart 

and Melbourne, respectively, while the heating loads decrease only 3.3 (GJ) for both 

Hobart and Melbourne. The optimum window and overhang values depend on city and 

building direction because of the trade-off between lighting, cooling and heating loads. 

These results can also be used to compute the optimised values for window-to-wall 

ratio. For example, Melbourne has window-to-wall ratios (excluding plenum) 

of 27.7%, 32.7%, 37.2% and 31.8% for the East, North, South and West building 
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faces, respectively. The minimum and maximum were selected for heating and cooling 

set-points for all cities, respectively. This is clearly expected when thermal comfort is 

not considered in the objective function and only as a constraint on the allowable range 

of indoor temperature set points. It should be noted that Table 4.5 shows optimisation 

solutions with decimal points, which are important in terms of solutions quality of 

optimisation algorithms, but this might be impractical for some variables in building 

design. For example, the heating/cooling set points are likely be rounded to their 

nearest integer in building design. 

From an energy point-of-view, the difference between optimised objective functions 

obtained by ACOR (e.g. 642.56 MJ/m2 (Brisbane)) and PSO-HJ (e.g. 642.74 MJ/m2 

(Brisbane)) are small. As can be seen in this table, despite slight differences between 

optimised objective functions, significantly different sets of parameters have been 

obtained by each algorithm, showing that the building objective function is very multi-

modal. This fact provides building designers with more options in designing low 

energy buildings. 

In real world optimisation problems, it is very likely that few optimisation runs will be 

utilised due to the high computational cost. Therefore, an algorithm that consistently 

leads to good solutions is preferable. A low mean value with small variability in results 

suggests a more reliable algorithm. Box–Whisker (BW) plots display the distribution 

of optimisation results of annual energy consumption (MJ/m2) for each city, based on 

ten runs. Comparing the median values in figures 4.3- 4.6 shows that ACOR (2) and 

ACOR (1) perform the best for all cites, respectively. Although the median value of 

ACOR (1) is very close to ACOR (2), it has a larger variability than the ACOR (2), 

which makes ACOR (1) less reliable than ACOR (2). In contrast to ACOR, in all cities 

the spread of the optimisation results in NM is much larger than others. In addition, 
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the median values of NM are also greater than other algorithms except for Darwin 

where PSOIW is highest. Apart from NM, the spread of the optimisation results in 

PSO-HJ for Brisbane and Hobart is larger than others.  
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Table 4-5: Optimisation results, best solution of each algorithm 

 Algorithm 
Objective 
Function 
(MJ/m2) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

B
ri

sb
an

e 

NM 644.21 0.66 0.49 1 0.30 0.75 0.75 0.86 0.74 0.57 0.94 0.54 0.88 21.58 27.00 19.65 

PSOIW 644.17 0.69 0.33 1 0.30 0.78 0.87 1.04 0.68 0.71 0.62 0.63 0.95 20.08 26.98 4.77 

PSO-HJ 642.74 0.90 0.30 1 0.30 0.75 0.79 0.93 0.75 1.00 0.60 0.58 1.00 18.00 27.00 2.60 

ACOR 
(1) 642.56 0.90 0.30 1 0.30 0.75 0.75 0.95 0.75 1.00 0.65 0.72 1.00 18.43 26.99 10.00 

ACOR 
(2) 642.74 0.90 0.30 1 0.30 0.86 0.83 0.94 0.75 0.74 0.71 0.71 1.00 19.04 26.99 11.66 

D
ar

w
in

 

NM 780.11 0.69 0.30 1 0.30 0.75 0.70 0.88 0.74 1.00 0.78 0.75 0.97 18.64 27.00 15.29 

PSOIW 781.32 0.84 0.31 1 0.30 0.69 0.67 0.93 0.74 1.00 0.89 0.71 0.92 21.31 26.98 36.72 

PSO-HJ 780.11 0.90 0.30 1 0.30 0.75 1.00 0.75 0.75 1.00 0.79 0.57 1.00 20.50 27.00 13.44 

ACOR 
(1) 779.25 0.90 0.30 1 0.30 0.73 0.75 0.91 0.75 1.00 1.00 0.69 1.00 21.92 26.99 2.01 

ACOR 
(2) 779.24 0.90 0.30 1 0.30 0.72 0.75 0.90 0.75 1.00 1.00 0.68 1.00 21.18 26.99 0.02 

H
ob

ar
t 

NM 547.10 0.90 0.39 1 0.30 1.00 0.67 1.36 0.88 0.76 0.53 0.60 0.76 18.02 27.00 18.28 

PSOIW 547.10 0.74 0.48 1 0.30 1.11 0.92 1.16 0.93 0.81 0.76 0.47 0.77 18. 00 27.00 17.95 

PSO-HJ 546.13 0.90 0.30 1 0.30 0.95 1.07 1.34 1.02 0.78 0.80 0.52 0.77 18.00 27.00 7.25 

ACOR 
(1) 545.92 0.90 0.30 1 0.30 0.75 1.02 1.26 0.92 1.00 0.77 0.25 0.70 18.00 27.00 0.00 

ACOR 
(2) 545.95 0.90 0.30 1 0.30 0.89 1.05 1.27 0.92 0.77 0.80 0.28 0.77 18.00 27.00 8.85 

M
el

bo
ur

ne
 

NM 577.19 0.67 0.62 1 0.30 0.74 0.89 0.96 0.79 0.56 0.56 0.59 0.69 18.57 26.99 4.84 

PSOIW 576.44 0.83 0.37 1 0.30 0.86 0.80 1.03 0.82 0.70 0.65 0.45 0.71 18.20 27.00 13.27 

PSO-HJ 575.82 0.90 0.30 1 0.30 0.78 0.75 0.99 0.75 0.68 1.00 0.28 1.00 18.50 27.00 9.60 

ACOR 
(1) 575.58 0.89 0.30 1 0.30 0.75 0.88 1.01 0.86 1.00 0.76 0.39 0.74 18.30 27.00 0.00 

ACOR 
(2) 575.64 0.90 0.30 1 0.30 0.88 0.87 0.99 0.75 0.76 0.75 0.38 1.00 18.30 27.00 19.70 
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Figure 4.3: Algorithm comparison results for Brisbane 

 

 

 
Figure 4.4: Algorithm comparison results for Darwin 
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Figure 4.5: Algorithm comparison results for Hobart 

 

 

 

Figure 4.6: Algorithm comparison results for Melbourne 
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The Wilcoxon rank-sum test was applied to understand the statistical 

significance of the differences in the algorithms’ performance. The Wilcoxon rank-

sum is a non-parametric statistical hypothesis test used to understand the probability 

that the difference between two groups (here two algorithms) is significant. In this test, 

low 𝑝𝑝-values indicate a low probability that the results were obtained by random 

chance while high 𝑝𝑝-values indicate a significant probability that there is no difference 

between the algorithm performances. Table 4.6 shows that for all cities the differences 

between both ACOR algorithms and NM, PSO-HJ as well as PSOIW, are very 

significant. There is, however, no significant difference between ACOR (2) and ACOR 

(1). 

Table 4-6: Wilcoxon rank-sum test results. Bold numbers indicate p-values that are 
below the conventional 0.05 significance level 

Algorithms Brisbane 
(P-value) 

Darwin 
(P-value) 

Hobart 
(P-value) 

Melbourne 
(P-value) 

ACOR (2) VS NM (0.0001) (0.0001) (0.0001) (0.0001) 

ACOR (2) VS PSOIW (0.0001) (0.0001) (0.0001) (0.0001) 

ACOR (2)  VS PSO-HJ (0.0022) (0.0001) (0.0001) (0.0003) 

ACOR (2) VS ACOR (1) (0.2730) (0.1405) (0.1405) (0.4274) 

ACOR (1) VS NM (0.0002) (0.0001) (0.0001) (0.0001) 

ACOR (1) VS PSOIW (0.0002) (0.0001) (0.0001) (0.0003) 

ACOR (1)  VS PSO-HJ (0.0173) (0.0001) (0.0022) (0.0173) 
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Another important metric for optimisation algorithms is the convergence rate. In 

building optimisation problems, the evaluation of objective function is time-

consuming, and it is therefore crucial that the number of function evaluations is kept 

to a minimum. Comparing convergence speed of optimisation algorithms is 

particularly important when the overall performance is very close in terms of the 

objective value (as is the case here).  

Figure 4.7 shows an example of the optimisation run (for a solution close to the 

median) for Brisbane. As can be seen, both ACOR (1) and ACOR (2) converge to their 

final solutions much faster than other metaheuristic algorithms. In early iterations, NM 

performance is better than PSOIW and PSO-HJ and quickly converges to a solution. 

However, its final solution is quite far from the best found solution. It can also be seen 

in the hybrid PSO-HJ algorithm, the PSO stopped after 3000 building simulations and 

then HJ refined the PSO results. The overall convergence speed of optimisation 

algorithms after ten runs is shown in figures 4.8- 4.11. 

    

 

Figure 4.7: Convergence speed for the solution close to median in Brisbane 
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Figure 4.8 and Figure 4.9 compare the convergence speed in the final stages of 

optimisation when algorithms converge to a solution very close to the final (e.g. 

within 0.1%) for Brisbane and Darwin. As can be seen, NM produced highly 

inconsistent results. In the PSO-HJ results, the solutions were found when the HJ 

algorithm started refining PSO solutions (after 3000 iterations). A comparison of 

median values shows that both ACOR (1) and ACOR (2) are between two to four-and-

a-half times faster than NM, PSOIW and PSO-HJ. Figure 4.10 and Figure 4.11 

compare the convergence speed in the initial optimisation stages when algorithms 

converge to a solution close to the optimised (e.g. within in 1%) for Hobart and 

Melbourne. Both ACOR algorithms showed slightly faster convergence rates than NM 

and much faster performance than PSOIW and PSO-HJ. A comparison of median 

values shows that ACOR (1) is almost seven times faster than PSO-HJ in Melbourne, 

and although NM has a potentially fast convergence rate, this rate is inconsistent and 

the solutions found have significantly higher energy consumption than the ACOR 

solutions. 
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Figure 4.8: Number of building simulations required for each algorithm to converge to 

within 0.1% of the final solution for Brisbane  
 

 
Figure 4.9: Number of building simulations required for each algorithm to converge 

to within 0.1% of the final solution for Darwin 
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Figure 4.10: Number of building simulations required for each algorithm to converge 

to within 1% of the final solution for Hobart  
 

 

 
Figure7b 

Figure 4.11: Number of building simulations required for each algorithm to converge 
to within 1% of the final solution for Melbourne 
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Figure 4.12: Building annual energy consumption for Scenarios A, B, and after 

optimisation 

Figure 4.12 shows the building annual energy consumption and the breakdown of 

energy consumption for Scenarios A, B, and after optimisation. This figure also shows 

that cooling loads in Scenario B in comparison to Scenario A reduced by 48.4%, 

39.5%, 62.6% and 61.1% for Brisbane, Darwin, Hobart and Melbourne, respectively. 

After applying simulation-based optimisation, the annual energy consumption 

(compared to Scenario B) was reduced by 13.9%, 12.9%, 12.9% and 11.47% for 

Brisbane, Darwin, Hobart and Melbourne, respectively. Comparison of the energy 

breakdown between Scenario B and optimised building shows that optimisation has 

significantly reduced the fan and cooling loads (fan energy consumption fell 53.45%, 

43.37%, 61.32% and 53.22% for Brisbane, Darwin, Hobart and Melbourne, 

respectively). The optimised building design in Darwin saw the maximum fan energy 

reduction by 34.65 MJ/m2. More importantly, cooling loads were reduced by 35.7%, 

24.9%, 52.03% and 39.5% for Brisbane, Darwin, Hobart and Melbourne, 

respectively. Darwin and Hobart experienced the maximum and minimum cooling 

load reductions of 75.92 MJ/m2 and 42.79 MJ/m2, respectively. It should be noted 

that despite the use of dimming electric lighting to harvest daylighting, lighting loads 
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almost remain constant between Scenario B and the optimised result. Since minimising 

of the cooling and lighting loads are conflicting objectives, it is noteworthy that the 

optimisation algorithm prioritises reduction of the cooling loads, which is not 

surprising in Australia (where cooling loads are typically high). Since the optimisation 

seeks the best balance between the various building loads, it is highly likely that an 

attempt to further decrease the lighting or cooling load would lead to a corresponding 

increase of equal or greater magnitude in the others. 

4.6 Conclusion   

In this chapter, an ACOR algorithm was developed for solving building optimisation 

problems and was applied to optimise fifteen variables in a representative commercial 

building in four diverse climates in Australia. A comparison between ACOR and three 

benchmark algorithms, NM, PSOIW and PSO-HJ, established the supremacy of 

ACOR in solving BOPs. All algorithms found good solutions. However, the two 

different parameter settings for ACOR (ACOR (1) and ACOR (2)) found results that 

are closer to global optimum than PSOIW and PSO-HJ. In terms of consistency (spread 

of results), ACOR (2) showed less variation in results and was by far more consistent 

than other algorithms. Importantly, both ACOR (1) and ACOR (2) converged much 

faster to their final solutions than the PSOIW and PSO-HJ. Indeed, since 

computational cost is a key issue limiting BOP practicality, this represents a significant 

result. The Wilcoxon rank-sum test confirmed that the superior performance of ACOR 

over the two other algorithms was statistically significant. Overall, ACOR (2) is 

recommended for solving BOPs due to finding more precise solutions, greater 

consistency in results and a fast convergence rate.  

This chapter also highlights the importance of using simulation-based optimisation for 

commercial buildings in Australia. The results showed that building optimisation using 
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a limited set of variables can achieve energy reductions of at least 11.47% and up 

to 13.9%, even after implementing the energy saving measures of Scenario B. This 

reduction was achieved largely by reducing the cooling load without significantly 

altering the lighting requirements (see Figure 4.12). Applying a simulation-based 

optimisation on an Australian representative ten-storey commercial building identifies 

the potential energy saving solutions, provides a better understanding of optimised 

values of design variables, and helps building designers meet building code 

requirements to design low-energy buildings in Australia.  
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Chapter 5: Algorithm for Mixed Variables 

5.1 Overview  

Many building optimisation problems include a combination of continuous and 

categorical (discrete) decisions, such as optimising the overhang size (e.g. continuous 

variable) and the window glazing type (e.g. categorical variable) [153, 154]. In this 

chapter, the ant colony optimisation algorithm with capabilities for handling mixed 

variables (ACOMV) is applied to BOPs for the first time. Motivated by ACOMV 

results, the modified version of ACOMV called ACOMV-M is developed for the first 

time. The results of ACOMV-M algorithms are then presented and compared against 

the benchmark algorithm identified in the literature. 

This chapter is organised as follows: Section 5.2 details the problem statement 

including both continuous and categorical variables. Section 5.3 details the ACOMV-

M algorithm. Section 5.4 presents the case study and Section 5.5 presents the results, 

followed by a chapter conclusion in Section 5.6. 

5.2 PROBLEM STATEMENT  

The building optimisation problem considered here can be formally stated as 

min
𝐱𝐱

 𝑓𝑓(𝐱𝐱) 

subject to:  𝐱𝐱 ∈ 𝕏𝕏 ⊆ ℝ𝑟𝑟 × 𝕍𝕍𝒄𝒄 5.1 

where 𝑓𝑓(⋅) is the objective function, and 𝕏𝕏 is the feasible space of independent design 

variables, composed of continuous and categorical subspaces (ℝ𝑟𝑟 and 𝕍𝕍𝑐𝑐, 

respectively). For each of the continuous variables (R𝑖𝑖) in 𝐱𝐱 the feasible design space 

is simply stated in terms of upper and lower bounds on parameters: −∞ < ℓ𝑖𝑖 ≤ R𝑖𝑖 ≤

𝑢𝑢𝑖𝑖 < +∞, 𝑖𝑖 = 1,2, … , 𝑓𝑓 where ℓ𝑖𝑖 and 𝑢𝑢𝑖𝑖 are the lower bound and the upper bound of 
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the 𝑖𝑖th optimisation variable. Since the decision variable input ranges can be 

normalised, we may assume that ℓ = 0 and 𝑢𝑢 = 1. For each of the categorical 

variables in 𝐱𝐱, the feasible design space is limited to a finite set of 𝑡𝑡𝑖𝑖 values 𝕍𝕍 ∈

 {𝑣𝑣1, . . . , 𝑣𝑣𝑡𝑡𝑖𝑖}. The objective function 𝑓𝑓(⋅) is the building annual end use energy 

consumption (MJ/m2 Year), which can be written as follows: 

𝑓𝑓(𝐱𝐱) = 𝐸𝐸𝑐𝑐(𝐱𝐱) + 𝐸𝐸𝑓𝑓(𝐱𝐱) + 𝐸𝐸ℓ(𝐱𝐱) + 𝐸𝐸𝑝𝑝(𝐱𝐱) + 𝐸𝐸ℎ(𝐱𝐱) + 𝐸𝐸𝑚𝑚(𝐱𝐱) 5.2 

where 𝐸𝐸𝑐𝑐  is the energy consumption for space cooling, 𝐸𝐸𝑓𝑓 is the energy consumption 

of the  fans, 𝐸𝐸ℓ  is the energy consumption of lighting, 𝐸𝐸𝑝𝑝 is the energy consumption 

of pumps, 𝐸𝐸ℎ is the energy consumption for space heating and 𝐸𝐸𝑚𝑚 is the energy 

consumption that includes interior equipment and heat rejection. 

5.3 Ant Colony Optimisation for Mixed Variables  

Ant Colony Optimisation for Mixed Variables (ACOMV), developed in [155], is an 

extended version of ACOR for solving optimisation problems with both continuous 

and categorical (discrete) variables.  

𝑅𝑅11 𝑅𝑅12 … 𝑅𝑅1𝑟𝑟 𝐶𝐶11 … 𝐶𝐶1𝑐𝑐   𝑓𝑓(𝐱𝐱1) 𝜔𝜔1 

𝑅𝑅21 𝑅𝑅22 … 𝑅𝑅2𝑟𝑟 𝐶𝐶21  … 𝐶𝐶2𝑐𝑐   𝑓𝑓(𝐱𝐱2) 𝜔𝜔2 

⋮ ⋮ … ⋮ ⋮ … ⋮  ⋮ ⋮ 

𝑅𝑅𝑗𝑗1 𝑅𝑅𝑗𝑗2 … 𝑅𝑅𝑗𝑗𝑟𝑟 𝐶𝐶j1  … 𝐶𝐶j𝑐𝑐   𝑓𝑓(𝐱𝐱𝑗𝑗) 𝜔𝜔𝑗𝑗 

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮  ⋮ ⋮ 

𝑅𝑅𝑀𝑀1  𝑅𝑅𝑀𝑀2  … 𝑅𝑅𝑀𝑀𝑟𝑟  𝐶𝐶M1  … 𝐶𝐶M𝑐𝑐   𝑓𝑓(𝐱𝐱𝑀𝑀) 𝜔𝜔𝑀𝑀 

Figure 5.1: Solution archive for ACOMV (adapted from [155]) 
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ACOMV, similar to ACOR, operates on a solution archive, an example of which is 

shown in Figure 5.1. This archive is generated randomly and contains two groups of 

columns, one for each of the 𝑓𝑓 categorical variables, and another for the 𝑐𝑐 continuous 

variables. A solution 𝑗𝑗 is thus represented as a 𝑓𝑓 + 𝑐𝑐 dimensional vector, 𝐱𝐱𝒋𝒋 =

�𝑅𝑅𝑗𝑗1,𝑅𝑅𝑗𝑗2, … ,𝑅𝑅𝑗𝑗𝑟𝑟 ,𝐶𝐶𝑗𝑗1,𝐶𝐶𝑗𝑗2, … ,𝐶𝐶𝑗𝑗𝑐𝑐� with an associated objective function value 𝑓𝑓�𝐱𝐱𝒋𝒋�. 

Solutions in the archive are sorted from lowest to highest objective values, i.e.  

𝑓𝑓(𝐱𝐱1) ≤  𝑓𝑓(𝐱𝐱2) ≤  …  ≤  𝑓𝑓�𝐱𝐱𝑗𝑗� ≤  …  ≤  𝑓𝑓(𝐱𝐱𝑀𝑀) 
5.3 

For the continuous variables in  𝐱𝐱, new candidate solutions are generated according to 

a Gaussian kernel probability density function (PDF) based on the solutions in the 

archive  

𝐺𝐺𝑖𝑖(𝑥𝑥) = �𝜔𝜔𝑗𝑗

𝑀𝑀

𝑗𝑗=1

𝑔𝑔𝑗𝑗𝑖𝑖(𝑥𝑥) = �𝜔𝜔𝑗𝑗
1

𝜎𝜎𝑗𝑗𝑖𝑖  √2𝜋𝜋
 𝑒𝑒
−
�𝑥𝑥−𝜇𝜇𝑗𝑗

𝑖𝑖�
2

2𝜎𝜎𝑗𝑗
𝑖𝑖2

 
𝑀𝑀

𝑗𝑗=1

 5.4 

where 𝐺𝐺𝑖𝑖(𝑥𝑥) is the Gaussian kernel for the 𝑖𝑖th dimension of the solution. For the 

continuous variable 𝑖𝑖 of solution 𝑗𝑗,  𝑔𝑔𝑗𝑗𝑖𝑖(𝑥𝑥) is the sub-Gaussian function, while 𝜇𝜇𝑗𝑗𝑖𝑖  and 

𝜎𝜎𝑗𝑗𝑖𝑖  are mean value and the standard deviation, respectively. The weights 𝜔𝜔𝑗𝑗 are set so 

that solutions with lower objective values are preferred, since they likely indicate 

neighbourhoods where good solutions may be found. Like ACOR, the weights are 

assigned based on the position of a solution in the archive 

𝜔𝜔𝑗𝑗 =
1

𝑞𝑞𝑞𝑞 √2𝜋𝜋
 𝑒𝑒
−(𝑗𝑗−1)2
2𝑞𝑞2𝑀𝑀2     

5.5 

where 𝑞𝑞 is a free parameter that controls how sharply the weights decrease with the 

archive index 𝑗𝑗. Low values of 𝑞𝑞 increase the weights of the best solutions relative to 

the other solutions in the archive.  
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The mean and standard deviation of the of the sub-Gaussians are also set based on the 

archive solutions 

 
𝜇𝜇𝑗𝑗𝑖𝑖 = 𝑅𝑅𝑗𝑗𝑖𝑖 5.6 

𝜎𝜎𝑗𝑗𝑖𝑖 = 𝜉𝜉�
�𝑅𝑅ℓ𝑖𝑖 − 𝑅𝑅𝑗𝑗𝑖𝑖�
𝑞𝑞 − 1

𝑀𝑀

ℓ=1

 
5.7 

In other words, the standard deviation is set according to the average distance of 𝐱𝐱𝑗𝑗 

from the other 𝑞𝑞 − 1 solutions in the archive along dimension 𝑖𝑖 in the parameter space. 

The free parameter 𝜉𝜉 is simply a scaling factor, which allows users to set the percentage 

of this average. 

The new candidate solutions are generated according to the distribution in Eq. 5.4 via 

a two-stage process. First, a solution from the archive is randomly selected with 

probability 

𝑃𝑃𝑗𝑗 =
𝜔𝜔𝑗𝑗

∑ 𝜔𝜔𝑟𝑟𝑀𝑀
𝑟𝑟=1

 
5.8 

Then, a new solution is sampled using the selected Gaussian function 

 

𝑔𝑔𝑗𝑗𝑖𝑖�𝑥𝑥�𝑖𝑖� =
1

𝜎𝜎j𝑖𝑖√2𝜋𝜋
𝑒𝑒
−
�𝑥𝑥�𝑖𝑖−𝜇𝜇j

𝑖𝑖�
2

2𝜎𝜎j
𝑖𝑖2

 
   𝑖𝑖 = 1,2, … ,𝑁𝑁  5.9 

where 𝑗𝑗 is the selected solution from the archive and 𝑁𝑁 is the number of elements in 

each solution (𝑁𝑁 = 𝑓𝑓 + 𝑐𝑐). The objective value of this solution is then evaluated and 

the generation procedure repeats until 𝑚𝑚 candidate solutions are generated. The 

archive is then updated by selecting the best 𝑞𝑞 solutions from the 𝑞𝑞 + 𝑚𝑚 solutions. 

Prior to optimisation with the ACOMV algorithm, all variables are normalised 
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between zero and one (𝑙𝑙𝑖𝑖 = 0 and 𝑢𝑢𝑖𝑖 = 1). However, a variable (𝑅𝑅𝑖𝑖) may violate the 

domain boundary constraint during the generation of new solutions. If this occurs, 𝑅𝑅𝑖𝑖 

is repaired as follows: 

if  𝑅𝑅𝑖𝑖 < 0 →     𝑅𝑅𝑖𝑖 = |𝑅𝑅𝑖𝑖| 

if 𝑅𝑅𝑖𝑖 > 1 →     𝑅𝑅𝑖𝑖 = 1 − (𝑅𝑅𝑖𝑖 − 𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓�𝑅𝑅𝑖𝑖� ) 

5.10 

For each categorical variable (1 ≤ 𝑖𝑖 ≤ 𝑐𝑐), each solution is incrementally constructed 

by randomly choosing one of the 𝑡𝑡𝑖𝑖 available values 𝑣𝑣ℓ𝑖𝑖  ∈  �𝑣𝑣1𝑖𝑖 , … , 𝑣𝑣𝑡𝑡𝑖𝑖
𝑖𝑖 �. The 

probability of choosing the ℓth value is 

𝑝𝑝ℓ𝑖𝑖 =  
𝜔𝜔ℓ

∑ 𝜔𝜔𝑗𝑗
𝑡𝑡𝑖𝑖
𝑗𝑗=1

 
5.11 

where 𝜔𝜔ℓ is the weight associated to the ℓth available value. The weight 𝜔𝜔ℓ is 

calculated as 

𝜔𝜔ℓ =

⎩
⎪⎪
⎨

⎪⎪
⎧

 

𝜔𝜔𝑗𝑗ℓ
𝑢𝑢ℓ𝑖𝑖

+  
𝑞𝑞
𝜂𝜂

,      𝑖𝑖𝑓𝑓(𝜂𝜂 > 0,   𝑢𝑢ℓ𝑖𝑖 > 0)

𝜔𝜔𝑗𝑗ℓ
𝑢𝑢ℓ𝑖𝑖

,        𝑖𝑖𝑓𝑓(𝜂𝜂 = 0,   𝑢𝑢ℓ𝑖𝑖 > 0)

𝑞𝑞
𝜂𝜂

,        𝑖𝑖𝑓𝑓(𝜂𝜂 > 0,   𝑢𝑢ℓ𝑖𝑖 = 0)

 5.12 

In the above equation 𝜔𝜔𝑗𝑗ℓ is calculated according to Eq. 5.5, and 𝑗𝑗ℓ is the index of the 

highest quality solution that uses value 𝑣𝑣ℓ𝑖𝑖  for the categorical variable 𝑖𝑖. 𝑢𝑢ℓ𝑖𝑖  is the 

number of solutions that use value 𝑣𝑣ℓ𝑖𝑖  for the categorical variable 𝑖𝑖 in the solution 

archive. The parameter 𝜂𝜂 is the number of values from the 𝑡𝑡𝑖𝑖 available ones that are 

not used by the solutions in the archive, and 𝑞𝑞 is the same parameter of the algorithm 

that was used in Eq. 5.5. To avoid stagnation, ACOMV may use a restart strategy, 

meaning that if the number of consecutive iterations with no improvement is larger 
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than a predefined number (𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓), the algorithm restarts, while keeping the 

best solution so far.  

A key challenge in the application of any optimisation algorithm is striking the proper 

balance between exploration of the search space and intensification of the search near 

optimised solutions. In ACOMV, this behaviour is controlled using the parameters 𝑞𝑞 

and  𝜉𝜉. Smaller values of 𝑞𝑞 promote intensification by assigning relatively large 

weights to better solutions in the archive and thus generating more candidate solutions 

in the neighbourhood of the best solutions. Larger values of 𝑞𝑞 increase exploration by 

assigning more uniform weights to solutions in the archive. The parameter 𝜉𝜉 is a 

normalised width of the sub-Gaussians, in which its higher values promote increased 

exploration around a given solution, while its lower values increase intensification near 

it. 

Motivated by the above observations and an initial simulation study (detailed in the 

next section), a modified version of ACOMV was developed based on the observations 

of the effect of the parameter 𝑞𝑞. In the modified algorithm (ACOMV-M), 𝑞𝑞 is 

decreased automatically when the number of consecutive iterations with no 

improvement exceeds a specific number ( 𝑀𝑀ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑘𝑘𝑀𝑀𝑔𝑔𝑒𝑒_𝐹𝐹𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓). This mechanism (Eq. 

5.13) helps the algorithm search locally to refine the solution near the best solutions. 

The ACOMV-M algorithm is summarised below. 

�
 𝑞𝑞 = 0.05099,            𝑖𝑖𝑓𝑓  𝑀𝑀ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑘𝑘𝑀𝑀𝑔𝑔𝑒𝑒 𝐹𝐹𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓 < 2    

 
  𝑞𝑞 = 0.0001,         𝑖𝑖𝑓𝑓  𝑀𝑀ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑘𝑘𝑀𝑀𝑔𝑔𝑒𝑒 𝐹𝐹𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓 ≥ 2 

 5.13 
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ACOMV-M algorithm 

1. Select values for the parameters 𝑞𝑞, 𝜉𝜉, 𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓, 𝑀𝑀ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑘𝑘𝑀𝑀𝑔𝑔𝑒𝑒_𝐹𝐹𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓, 

𝑞𝑞,𝑚𝑚 ≤ 𝑞𝑞 

2. Initialise. Randomly generate 𝐱𝐱𝑗𝑗,  𝑗𝑗 = 1,2, … ,𝑞𝑞 according to component-

wise uniform distributions between the upper and lower bounds. Store all 

solutions in the solution archive and compute the objective value associated 

with each solution 

3. Sort solutions in ascending order according to their objective values so that 

Eq. 5.3 is satisfied 

4. Calculate weights according to Eq. 5.5 

5. Generate a new solution  

a. Select a solution 𝑗𝑗 from the archive with probabilities from Eq. 5.8 

b. Generate a continuous solution according to Eq. 5.9 

c. Adjust any variable values violating constraints according to Eq. 5.10 

d. Generate a categorical solution according to Eq. 5.11 and Eq. 5.12 

6. Repeat  step 5,  𝑚𝑚 times 

7. Evaluate objectives of 𝑚𝑚 new solutions 

8. Select the best 𝑞𝑞 solutions from the 𝑞𝑞 + 𝑚𝑚 solutions available 

9. Check the restart condition (𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓). If it is satisfied, initialise archive 

while keeping the best-so-far solution 

10. Check the shrinkage condition (Eq.5.13) 

11. Check the stopping criterion. If it is not satisfied, return to 3. 
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5.4 Case Study   

The simulation-based optimisation methods were applied to building Type B.  

This building is also recommended by ABCB as the typical medium-size commercial 

buildings and has all features of a real building. This building has been used in many 

studies [102, 120, 131, 149]. Therefore, it is a suitable case study and it provides an 

opportunity to test the proposed optimisation methods in another case study as well. in 

another case study as well. In addition, building Type B is computationally more 

efficient since its simulation time is approximately thirty percent faster than a Type A 

building. Two diverse climates were considered here: Brisbane with warm humid 

summers and mild winters, and Hobart with mild to warm summers and cold winters 

[124]. The typical number of climates applied to algorithm comparison studies varies 

from one [43, 48] to three [24, 44]. Therefore, two different climates were considered 

here upon the condition that the benchmarking results are consistent. Details of 

building Type B were stated in Chapter 3. However, two modifications were made for 

this building before optimisation. First, daylighting control for each perimeter zone 

with one reference point with 320 lux set point at a height of 0.8 (𝑚𝑚) from the floor 

with continuous lighting control (minimum electric power and light output =  0) was 

added. Secondly, temperature set back was removed.  

The objective function was to minimise the annual energy consumption of the building 

(Eq.5.2). Optimised values of variables (presented in chapter 4) showed that for the 

different Australian climates maximum solar emissivity and minimum solar 

absorbtance for walls and roofs are needed even for Hobart (with mild to warm 

summers and cold winters). In addition, for the retrofit purposes, considering building 

orientation as an optimisation variable is not an appropriate assumption. Accordingly, 

in this chapter, nine optimisation variables which are listed in Table 5.1 and Table 5.2 
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were selected among fifteen optimisation variables presented in Table 5-1. Different 

sets of these nine variables (including both continuous and discrete variables) have 

been used in other studies as well [15, 24, 44, 45]. In the next section, in order to 

investigate the performance of the optimisation algorithms and identify the best one, 

the results of three algorithms (i.e. ACOMV, ACOMV-M and PSOHJ) are compared. 
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Table 5-1 : Optimisation variables and their ranges 

Variables Description Variable Range 

x1 Wall insulation (cm) [1- 10] 

x2 North overhang depth (m) [0-1.2] 

x3 South overhang depth (m) [0-1.2] 

x4 East overhang depth (m) [0-1.2] 

x5 West overhang depth (m) [0-1.2] 

x6 North window Table 5.2 

x7 South window Table 5.2 

x8 East window Table 5.2 

x9 West window Table 5.2 

Table 5-2: Different window types used for categorical variables (X6 to X9) 

Window Type 
U Value 

[W/m2K] 
SHGC 

Visible 

Transmittance 

Single  

glazed 

1-Clear 5.88 0.81 0.88 

2-Tinted 5.77 0.60 0.43 

3-Reflective 5.06 0.40 0.30 

4-Low-e 3.43 0.63 0.84 

Double 

glazed 

5-Clear 2.71 0.70 0.78 

6-Reflective 2.46 0.30 0.27 

7-Tinted 2.69 0.48 0.38 

8-Low-e 1.77 0.57 0.74 

9-Low-e-tinted 1.77 0.38 0.44 

Triple 

 glazed 

10-Clear 1.76 0.61 0.69 

11-Low-e 1.30 0.51 0.66 

5.5 Results  

The performance of the optimisation algorithms are compared with three key 

performance metrics: 1) quality of solutions, 2) consistency (reliably achieving 
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solutions close to the optimised), and 3) computational cost. Twenty optimisation runs 

of each algorithm were conducted to provide a statistical characterisation of their 

performance. In order to provide a fair comparison among the different algorithms, the 

total number of building simulations was kept constant. A limit of 4000 building 

simulations (i.e. stopping criterion) was selected for ACOMV algorithms. However, 

the hybrid PSOHJ algorithm cannot be limited in the same way, since the Hooke-

Jeeves algorithm stops only when no improvement is found. Therefore, a limit of 3800 

building simulations was selected for PSO, and then Hooke-Jeeves refines the PSO 

results after 100 to 200 building simulations. A High Performance Computing (HPC) 

cluster was used, and the time required for each optimisation run with EnergyPlus 

8.1.0 is approximately 50 hours. 

An important factor in optimisation algorithm performance is the values for the free 

parameters. Table 5.3 shows the parameters used in the PSOHJ algorithms. These 

parameters were set based on recommendations from previous studies, which analysed 

PSO performance on benchmark functions and building optimisation problems [44, 

151]. Except for 𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓, all parameters used in the ACOMV are those 

recommended in [155] and are used in this study and shown in Table 5.4. The 

parameter 𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓 is set to 400 (approximately 10% of the maximum number 

of iterations) based on trial-and-error. In ACOMV-M, the  𝑀𝑀ℎ𝑓𝑓𝑖𝑖𝑛𝑛𝑘𝑘𝑀𝑀𝑔𝑔𝑒𝑒_𝐹𝐹𝑀𝑀𝑐𝑐𝑡𝑡𝑓𝑓𝑓𝑓 is set 

to 2 × 𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓. 
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Table 5-3: Parameters used for PSOHJ 

Parameters PSOHJ 

Topology Von Neumann 

Number of particles 100 

Cognitive acceleration 2.05 

Social acceleration 2.05 

Constriction gain 1 

Max velocity gain 0.2 

Mesh size divider 2 

Initial mesh size exponent 0 

Mesh size exponent increment 1 

Number of step reductions 4 

 

Table 5-4: Parameters used for ACOMV 

Parameters ACOMV 

No. of new solutions used in each iteration (ants) 5 

𝑞𝑞 parameter 0.0509 

Speed of convergence (𝜉𝜉) 0.6795 

Archive size 90 

Stagnating iterations before restart (𝑞𝑞𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡𝑀𝑀𝑔𝑔𝑀𝑀𝑡𝑡𝑒𝑒𝑓𝑓), 400 

 

Table 5.5 shows the quality of solutions found by each algorithm for both Brisbane 

and Hobart. This table presents the best solutions, and solutions that are close to 

median value for each algorithm among twenty runs. To facilitate comparison among 

the results, the energy consumption per unit floor area has been presented. As can be 
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seen, the maximum energy reduction was obtained by ACOMV-M, however, PSOHJ 

found solutions very close to the best solution. For this building, the difference of 

solutions between worst and the best algorithm is less than 0.5%, although this 

difference will likely vary significantly for different buildings and/or climates.  

In order to compare the consistency of optimisation algorithms, a Box–Whisker plot 

was used. A Box–Whisker plot displays the distribution of optimisation results of 

annual building energy consumption, based on twenty runs. A low median value (red 

line in the box) with small spread suggests a reliable algorithm in finding high-quality 

solutions in any experiment. A comparison between results in Figure 5.2 and Figure 

5.3 shows that for both cities, the variability of ACOMV-M is very small. PSOHJ also 

performs well with the median value, which is close to ACOMV-M. By contrast, the 

spread of the optimisation results in ACOMV is larger than others. As can be seen for 

both cities, PSOHJ converged to some solutions that are relatively far from its median 

values (outliers). 

Table 5-5: Optimisation results (Bold indicates the best found over all algorithms) 

City  
PSOHJ  

(𝐌𝐌𝐌𝐌/𝐦𝐦𝟐𝟐/𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) 
ACOMV  

(𝐌𝐌𝐌𝐌/𝐦𝐦𝟐𝟐/𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) 
ACOMV-M 

 (𝐌𝐌𝐌𝐌/𝐦𝐦𝟐𝟐/𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) 

Brisbane 
Solution  (Median) 714.86 716.37 714.69 

Solution  (Best) 714.74 715.36 714.67 

Hobart 
Solution  (Median) 596.72 598.10 596.67 

Solution  (Best) 596.67 597.40 596.66 
   
 
 



 

82 Chapter 5: Algorithm for Mixed Variables 

 

Figure 5.2 : Algorithm comparison with Box-Whisker plots for 20 runs for Brisbane 
 

 

Figure 5.3 : Algorithm comparison with Box-Whisker plots for 20 runs for Hobart 
 

To understand whether the difference between two algorithms is statistically 

significant, the Wilcoxon rank-sum test was applied. In this test, the null hypothesis 

(𝑝𝑝-value > 0.05) means that there is no significant difference between two algorithms 
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and the results may have been obtained by random chance. As shown in Table 5-6, the 

differences between ACOMV-M and other algorithms are indeed statistically 

significant. 

 
Table 5-6: Wilcoxon rank-sum test results    

City 
ACOMV-M VS 

PSOHJ 
(𝑷𝑷-value, h) 

ACOMV-M VS 
ACOMV 

(𝑷𝑷-value, h) 

PSOHJ VS 
 ACOMV 

(𝑷𝑷-value, h) 

Brisbane (7.510e-06 ,1) (6.795e-08 ,1) (6.709e-08,1) 

Hobart (6.415e-04, 1) (6.766e-08, 1) (5.784e-08, 1) 

 

The last comparison metric for optimisation algorithms is the convergence rate. In 

BOPs, the evaluation of objective function is frequently time-consuming. It is 

therefore essential that the number of building simulations is kept to a minimum, 

particularly when the algorithms’ overall performance is very close in terms of the 

value of objective functions (as is the case here). Figure 5.4 and Figure 5.5 show an 

example of a convergence curve for a solution close to the median value among twenty 

runs. As can be seen for both cities, PSOHJ decreases gradually and stops after 3800 

building simulations, and then HJ refines the PSO results, which is more noticeable 

for Brisbane (Figure 5.4). In contrast, the ACOMV algorithm falls rapidly at the initial 

iterations and then remains relatively unchanged and converges to a solution that is far 

from the best solution. ACOMV-M is similar to ACOMV and drops rapidly at the 

initial iterations and then it shrinks 𝑞𝑞 automatically when no improvement is found 

after a predefined number to search locally. As can been seen, the refinements in the 

local search are considerable in both cities. This algorithm converges to a final solution 

earlier than other algorithms.  
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Figure 5.4: Convergence curve for the solution close to median for Brisbane 
 
 

 

Figure 5.5: Convergence curve for the solution close to median for Hobart 
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Figure 5.6: Number of simulations needed for each algorithm to achieve a solution 
within 1% of the best solution 

 

 
 

Figure 5.7: Number of simulations needed for each algorithm to achieve a solution 
within 0.1% of the best solution 
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Fig. 5a 

Figure 5.8:Number of simulations needed for each algorithm to achieve a solution 
within 1% of the best solution 

 

 

Figure 5.9: Number of simulations needed for each algorithm to achieve a solution 

within 0.1% of the best solution 
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Figure 5.6 shows the distribution of the number of building simulations when each 

algorithm achieved a solution within 1% of the best solution found (over all 

algorithms). As can be seen, all algorithms are able to find solutions within 1% with 

the small numbers of building simulations and with median values of 431.5, 108 and 

105 for PSOHJ, ACOMV and ACOMV-M, respectively. However, both ACOMV and 

ACOMV-M algorithms are able to consistently find solutions faster than PSOHJ. 

Figure 5.7 shows the distribution of the number of simulations when each algorithm 

achieved a solution within 0.1% of the best solution found (over all algorithms). A 

comparison between median values shows that ACOMV-M (median value = 1653.5) 

is approximately two times faster than PSOHJ (median value = 3298.5). It should be 

noted that the ACOMV algorithm could not find any solutions 0.99% close to the best 

solution. 

Figure 5.8 and Figure 5.9 show the distribution of the number of building simulations 

for Hobart when each algorithm achieved a solution within 1% and 0. 1% of the best 

solutions found (over all algorithms). Similar to Brisbane, this comparison shows that 

ACOMV-M has a faster convergence rate than other algorithms. Median values of 

distribution of the number of building simulations, when each algorithm achieved a 

solution within 1% and 0.1% of the best solutions, are presented in Table 5.7. 
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Table 5-7: Median values of distribution of the number of building simulations 

Median values Location PSOHJ ACOMV ACOMV-M 

within 1% of the best solution Brisbane 431.5 108 105 

within 0.1% of the best solution Brisbane 3639.5 - 2110.5 

within 1% of the best solution Hobart 247.5 126.5 123 

within 0.1% of the best solution Hobart 3298.5 - 1653.5 

 

5.6 Conclusion  

In this chapter, firstly, to alleviate the computational cost of solving the BOPs with 

both continuous and discrete variables, a modified version of an ant colony 

optimisation algorithm called ACOMV-M was developed with the specific aim of 

localising the search in the later stages of optimisation. Then, this algorithm was 

applied to optimise nine variables (continuous and categorical) in a representative 

medium-size commercial building in both Brisbane and Hobart. A comparison 

between ACOMV, ACOMV-M and PSOHJ algorithms showed that ACOMV-M 

found solutions that are consistently slightly closer to the optimum. The Wilcoxon 

rank-sum test also statistically confirmed the better performance of ACOMV-M over 

other algorithms. In terms of convergence, both ACOMV algorithms converge to 

within 1% of the best solution faster than PSOHJ, however only ACOMV-M 

converges to within 0.1% faster than PSOHJ (approximately 50% fewer building 

simulations). After applying the optimisation method, up to 19% and 26% energy 

savings were achieved for Brisbane and Hobart, respectively.  
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Chapter 6: Uncertainty in Optimisation 

6.1 Uncertainty in Building Simulation and Optimisation  

In the vast majority of simulation/optimisation problems, building designers 

assume that building input parameters are deterministic (or perfectly known). 

However, in real building problems, especially at the early stages, parameters are often 

highly uncertain. These uncertainties may arise from different sources, including 

uncertainties in the thermophysical properties of construction materials and in weather 

data, lack of designers’ knowledge of building occupancy, occupant behaviour and 

appliance loads, and uncontrolled infiltration rates [99, 100]). Due in part to this 

uncertainty, the simulated building and actual energy consumption may be quite 

different (i.e. the “performance gap” noted in many studies [103, 106]). In BOPs, this 

sensitivity to uncertain quantities implies that the “optimised” building may be far 

from the actual optimum. 

The common methods to address uncertainty such as Monte Carlo simulation require 

probabilistic distributions of parameters that may not be available or representative, 

particularly in light of the fact that uncertainties may change during the lifetime of 

buildings [100]. In such cases, scenario analysis (i.e. analysing the behaviour of the 

building under a number of different specific building assumptions)  may provide a 

complementary tool to enable uncertainty analysis when detailed distributional 

information is lacking [116].  

Accordingly, in this chapter, the sensitivity of the optimised parameters to different 

simulation assumptions is first investigated in Section 6.2. It should be noted that the 

sensitivity of the optimised design for each scenario to optimisation variables and 
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finding the robust optimised design for each scenario are an important subject which 

were investigated in many studies (see section 2.4) and was not studied here. In order 

to increase the robustness of optimised building (motivated by sensitivity study) a new 

formulation is then developed based on scenario-based, multi-objective optimisation 

in Section 6.3. Finally, the chapter conclusion is presented in Section 6.4.   

6.2 Sensitivity of Optimised Building to Uncertain Parameters 

In order to investigate the sensitivity of the optimised parameters to different 

simulation parameters, building Type B (stated in Chapter 3:) is simulated and 

optimised under three different scenarios: “base”, “low” and “high” scenarios for two 

different climate zones, Brisbane and Hobart. Details of these scenarios are listed 

Table 6.1. The values of parameters for low and high scenarios were taken from 

previous studies that modelled building Type B [102]. As methods used for uncertainty 

analysis are often computationally expensive (see section 2.4), algorithms should be 

used that benefit from both accuracy and high convergence speed. Therefore, ACOM-

M was used for optimisation as it has shown its suitability for BOPs in the previous 

chapter. 

The optimisation objective function is the building annual end use energy consumption 

(Eq. 5.2). The nine variables applied to the case study in Chapter 5 were also selected 

here (Table 5.1 and Table 5.2). The building’s characteristics and construction 

properties were detailed in Chapter 3:. However, two modifications including 

daylighting control and removal of temperature set back were added to this building 

before optimisation (the same as the case study stated in section 5.4).  
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Table 6-1: Base, high and low scenarios [102] 

Parameter Base Scenario Low Scenario High Scenario 

Lighting (W/m2) 15 9.3 21 

Equipment (W/m2) 15 7.5 20 

Occupant (m2/person) 10 50 5 

Infiltration rate (ACH) 1 0.25 1.5 

 

6.2.1 Results  

Table 6.2 presents the results of simulation-based optimisation method using 

ACOMV-M for three scenarios for Brisbane and Hobart. As can be seen, different 

parameter sets were obtained in each scenario, showing that the optimised building 

design is highly sensitive to building simulation inputs. According to optimisation 

results for Brisbane, contrary to intuition, low insulation thicknesses are superior for 

energy consumption in the base and high scenarios. This is likely due to high internal 

loads in the building with a high scenario during daytime as well as Brisbane’s climate 

[152, 156]. With regard to shading size, in all scenarios the values near the maximum 

were chosen by the optimisation algorithm in the north face, while optimised values 

for other faces are different. The optimised window type was found to be double-

glazed reflective windows in the north and south faces, and double-glazed tint 

windows with low emissivity in the west face in all scenarios.  

For Hobart, regardless of scenarios, the maximum insulation thickness was selected 

by the optimisation algorithm. The optimised values of optimisation variables depend 

largely on building simulation assumptions and direction of building face. For 

example, for the North, South and West building faces, for a building with base 

scenario, the optimised window type is double pane tint windows with the low 
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emissivity glass while for the building with low scenario, optimised window type is 

triple pane windows with low emissivity glass.  

Table 6-2: Optimisation results in different scenarios 

City Scenario 

Energy 
(𝐌𝐌𝐌𝐌/
𝐦𝐦𝟐𝟐/
𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) 

Insula-
tion 
(cm) 

Shading 
(N) 

Shading 
(S) 

Shading 
(E) 

Shading 
(W) 

Win  
type  
(N) 

Win  
type  
(S) 

Win 
 Type 
 (E) 

Win 
 type 
(W) 

B
ri

sb
an

e 

Base 714.67 2.6 1.172 1.166 0.457 0.511 6 6 8 9 

Low 310.82 10 1.169 1.169 0.511 1.199 6 6 6 9 

High 1004.2 1 1.168 0.750 0.224 0.506 6 6 11 9 

H
ob

ar
t 

Base 596.66 10 1.169 0.479 0.511 0.506 9 9 11 9 

Low 287.35 10 0.844 0.041 0.511 1.200 11 11 9 11 

High 813.79 10 1.168 0.042 0.479 0.511 6 6 4 11 

 

Table 6.3 shows the building annual energy consumption for all scenarios before and 

after optimisation. After applying the simulation-based optimisation method, the 

energy consumption of base, low and high scenarios reduced by 8.7%, 19.0% 

and 6.4% for Brisbane and 13.1%, 26.2% and  9.1% for Hobart, respectively. This 

table also shows the effect of inaccurate simulation inputs on saving energy obtained 

by the simulation-based optimisation method. For example, to simulate an 

underestimation of the internal loads, the optimised parameters for the low scenario 

are applied to a building whose internal loads are actually the base scenario. This leads 

to a reduction in energy savings from 13.1% to 11.9% in Hobart. In the extreme cases 

(i.e. considering the low scenario while building actual scenario is similar to the high 
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scenario) applying optimisation methods may reduce the building energy saving by 

3.0 and 4.8 percentage points for Brisbane and Hobart, respectively.  

Table 6-3: Building energy consumption before and after optimisation 

 Location Brisbane Hobart 

  
Energy 

(MJ/m2/
year) 

Energy Saving 
(compared to 

 before 
optimisation) 

Energy 
(MJ/m2/

year) 

Energy Saving 
 (compared to 

before 
optimisation) 

B
as

e 
Sc

en
ar

io
 

Before optimisation 782.69 - 686.65 - 

After optimisation 714.67 8.7% 596.66 13.1% 

with optimised parameters of low 
scenario 720.62 7.9% 604.46 11.9% 

with optimised parameters of 
high scenario 716.22 8.5% 598.95 12.7% 

L
ow

 S
ce

na
ri

o 

Before optimisation 383.71 - 389.28 - 

After optimisation 310.82 19% 287.35 26.2% 

with optimised parameters of base 
scenario 316.60 17.5% 294.95 24.2% 

with optimised parameters of high 
scenario 322.03 16% 305.79 21.4% 

H
ig

h 
Sc

en
ar

io
 

Before optimisation 1072.67 - 895.62 - 

After optimisation 1004.21 6.4% 813.79 9.1% 

with optimised parameters of 
base scenario 1006.67 6.1% 816.09 8.8% 

with optimised parameters of low 
scenario 1021.54 4.7% 827.95 7.5% 

 



 

94 Chapter 6: Uncertainty in Optimisation 

6.3 Increasing Robustness Using Multi-Objective Optimisation 

In order to increase the robustness of optimised design to uncertainty in building 

simulation inputs (motivated by the sensitivity study), a new optimisation formulation 

was developed based on scenario-based multi-objective optimisation. This new 

formulation considers all three scenarios simultaneously during the optimisation and 

consequently increases the robustness of final solutions.  

6.3.1 Problem Statement   

The multi-objective optimisation can be generally stated as follows: 

min
𝐱𝐱

 [𝑓𝑓1(𝐱𝐱),𝑓𝑓2(𝐱𝐱), … ,𝑓𝑓𝐾𝐾(𝐱𝐱)] 

subject to:  𝐱𝐱 ∈ 𝕏𝕏 ⊆ ℝ𝑟𝑟 × 𝕍𝕍𝒄𝒄 
6.1 

where 𝑓𝑓(⋅) is the objective function, 𝐾𝐾 is the number of objective functions, 𝕏𝕏 is the 

feasible space of independent design variables which is composed of continuous and 

categorical subspaces (ℝ𝑟𝑟 and 𝕍𝕍𝑐𝑐, respectively). For both continuous and categorical 

variables in 𝐱𝐱 the feasible design spaces are the same as described for Eq. 5.1.  

The multi-objective optimisation problem considered here includes the building 

energy consumption under three different scenarios: a base (i.e. most likely) scenario 

 𝑓𝑓𝑏𝑏(𝐱𝐱), a low scenario  𝑓𝑓ℓ(𝐱𝐱), and a high scenario 𝑓𝑓ℎ(𝐱𝐱). The Weighted Sum Method 

(WSM) is used to scalarise the multi-objective optimisation problem. A weight (𝑤𝑤𝑖𝑖  >

 0) is assigned to each objective function, which can be thought of as a relative 

probability of the scenario: 

𝑓𝑓(𝐱𝐱) = 𝑤𝑤𝑏𝑏𝑓𝑓𝑏𝑏(𝐱𝐱) + 𝑤𝑤𝑙𝑙𝑓𝑓ℓ(𝐱𝐱) + 𝑤𝑤ℎ𝑓𝑓ℎ(𝐱𝐱) 
6.2 

𝑤𝑤𝑏𝑏 + 𝑤𝑤ℓ + 𝑤𝑤ℎ = 1 

𝑤𝑤ℓ + 𝑤𝑤ℎ ≤ 𝑤𝑤𝑏𝑏  

 

6.3 
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where  𝑤𝑤𝑏𝑏 , 𝑤𝑤ℓ and 𝑤𝑤ℎ are the weights corresponding to each scenario and 

 𝑓𝑓𝑏𝑏(𝐱𝐱),  𝑓𝑓ℓ(𝐱𝐱)  and 𝑓𝑓ℎ(𝐱𝐱) are calculated as follows: 

𝑓𝑓𝑖𝑖(𝐱𝐱) = 𝐸𝐸𝑐𝑐𝑖𝑖(𝐱𝐱) + 𝐸𝐸𝑓𝑓𝑖𝑖(𝐱𝐱) + 𝐸𝐸ℓ𝑖𝑖(𝐱𝐱) + 𝐸𝐸𝑝𝑝𝑖𝑖 (𝐱𝐱) + 𝐸𝐸ℎ𝑖𝑖 (𝐱𝐱) + 𝐸𝐸𝑚𝑚𝑖𝑖 (𝐱𝐱)          𝑖𝑖 = 𝑏𝑏, ℓ,ℎ  6.4 

where for each scenario, 𝐸𝐸𝑐𝑐 is the energy consumption for space cooling; 𝐸𝐸𝑓𝑓 is the 

energy consumption of the  fans; 𝐸𝐸ℓ  is the energy consumption of lighting; 𝐸𝐸𝑝𝑝 is the 

energy consumption of pumps; 𝐸𝐸ℎ is the energy consumption for space heating and 

𝐸𝐸𝑚𝑚 is the energy consumption that includes interior equipment and heat rejection. It is 

noted that it is assumed here that the base (original) scenario represents the most likely 

scenario, with only combinations of weights that satisfy  𝑤𝑤ℓ + 𝑤𝑤ℎ ≤ 𝑤𝑤𝑏𝑏 being 

considered, i.e. the base scenario is the most likely. This assumption comes from this 

fact that the according to the ABCB, base scenario is the typical scenario for 

commercial buildings (the most likely one (𝑤𝑤𝑏𝑏 ≥ 0.5)) while there might be some 

deviations from the base scenario. 

6.3.2 Robust Optimised Design Case Study 

In this section, the results of the multi-objective optimisation using the Weighted 

Sum Method (WSM) are presented (Eq. 6.2). WSM was applied to convert the three-

objective optimisation problem into a single-objective problem and ACOMV-M was 

applied to minimise the weighted objective. The weights are varied with a step size 

equal 0.1 to explore the effect of different scenario weights on the optimised building. 

For each combination of weights, five runs were conducted and the best run was 

selected. A limit of 9000 building simulations was selected for ACOMV-M algorithm, 

taking approximately 115 hours for each optimisation run with a high performance 

computing cluster.  
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 Table 6.4 shows the multi-objective optimisation results for Brisbane. A 

comparison of objective function values between this table and Table 6.3 (i.e. single-

objective) gives a sense for how much energy is “sacrificed” if a decision maker selects 

a solution with a higher degree of robustness with respect to possible changes in design 

scenarios. As can be seen in Table 6.4, it is possible to make significant energy gains 

in the base scenario without large sacrifices in the energy consumption in other 

scenarios. For example, consider the first row of Table 6.4 where the high and base 

scenarios are equally weighted (𝑤𝑤ℎ = 𝑤𝑤ℓ = 0.5). Both the base and the high energy 

consumption are approximately 0.35 (MJ/m2/year) above their single-scenario 

optimised values from Table 6.3. One can compare this with the results in Table 6.3, 

where overestimating internal loads (first bold row of Table 6.3) will yield a building 

that has energy consumption 1.5 (MJ/m2/year) above the actual optimised value 

(714.67 MJ/m2/year). Alternatively, if one underestimates the internal loads (second 

bold row in Table 6.3), the energy consumption is 2.46 (MJ/m2/year) above the true 

optimised (1004.21 MJ/m2/year). By considering the weighted sum of the base and 

high scenarios, the resulting design has been designed to a compromise between the 

two scenarios, resulting in a lower energy sacrifice when the designer’s simulation 

assumptions are erroneous. On the other hand, the same example shows that the low 

scenario is quite far from the optimised value (albeit still lower than before 

optimisation) since it was not considered in the optimisation (𝑤𝑤ℓ = 0).  A similar 

analysis can be done for the other rows of Table 6.4. In general, higher robustness can 

be achieved by small sacrifices in the optimality of a building to any one scenario.  

With regard to building configuration, by changing the weighting factors, different sets 

of optimised design variables were obtained, highlighting the importance of 

considering uncertainty in optimisation problems. Increasing the influence of high 
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scenario (𝑤𝑤ℎ) leads to a decrease in the insulation thickness, so that when the high 

scenario has the same importance as the base scenario (𝑤𝑤𝑏𝑏 = 𝑤𝑤ℎ = 0.5), minimum 

insulation thickness is required. Regarding shading size, different values were obtained 

in the south and east faces, while values remained constant in the north and west faces. 

Results show that approximately the maximum shading size in the north face is 

required. It is also observed that the window type is independent from the scenario in 

the north, south and west faces, while in the east face it depends heavily on the building 

scenario weights, emphasising the sensitivity of east-facing windows to simulation 

assumptions. 

Table 6.5 shows the multi-objective optimisation results for Hobart. As can be seen in 

this table, in contrast to Brisbane, maximum insulation thickness is required for all 

combinations of scenarios. The shading size is almost constant (approximately half a 

metre) in the east and west faces. On the other hand, different values were selected for 

shading size in the north and south faces. As shown, the optimisation algorithm found 

large values for shading size in the north face and small values for the south face, 

which confirms rule-of-thumb design guidelines. In southern cities in Australia, 

windows facing south receive less direct solar heat gain as they are frequently under 

the shadow due to angle of the sun in the south hemisphere. Therefore, they require 

smaller overhangs as they tend to benefit from the daylighting. With regard to 

windows, type 9 is required for the south and west faces for all cases, except 

when  𝑤𝑤𝑏𝑏 = 𝑤𝑤ℎ = 0.5. However, in the east and north faces, window type depends on 

the scenario weights.  

A comparison of objective function values between this Table 6.5 and Table 6.3 shows 

the amount of energy that is sacrificed to select a robust solution with respect to 

probable changes in simulation scenarios. For instance, when there is an equal weight 
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for the base and low scenarios (𝑤𝑤𝑏𝑏 = 𝑤𝑤ℓ), a compromise solution was obtained by 

sacrificing approximately 2 (MJ/m2/year) and 3 (MJ/m2/year)  energy of building 

with base and low scenarios, respectively. 
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Table 6-4: Multi-objective optimisation results for Brisbane 

𝒘𝒘𝒃𝒃 𝒘𝒘𝓵𝓵 𝒘𝒘𝒉𝒉 

Scenarios 
Energy (𝐌𝐌𝐌𝐌/𝐦𝐦𝟐𝟐/𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) Insula-

tion 
(cm) 

Shading 
(N) 

Shading 
(S) 

Shading 
(E) 

Shading 
(W) 

Win 
type  
(N) 

Win 
type  
(S) 

Win 
type 
 (E) 

Win 
type 
(W) Base Low High 

0.5 0.0 0.5 715.00 320.13 1004.60 1 1.17 0.75 0.24 0.51 6 6 9 9 

0.5 0.1 0.4 715.22 318.23 1004.92 1 1.18 0.75 0.51 0.51 6 6 8 9 

0.5 0.2 0.3 714.70 314.55 1007.48 4 1.18 1.17 0.48 0.51 6 6 8 9 

0.5 0.3 0.2 714.97 312.14 1009.17 10 1.17 1.16 0.49 0.51 6 6 11 9 

0.5 0.4 0.1 714.96 312.04 1009.21 10 1.17 1.17 0.49 0.51 6 6 11 9 

0.5 0.5 0.0 714.98 312.03 1009.31 10 1.17 1.17 0.49 0.51 6 6 11 9 

0.6 0.0 0.4 714.93 320.29 1004.80 1 1.18 1.17 0.24 0.51 6 6 9 9 

0.6 0.1 0.3 714.92 319.64 1004.84 1 1.18 1.17 0.24 0.51 6 6 9 9 

0.6 0.2 0.2 714.71 313.82 1007.91 5 1.17 1.17 0.49 0.51 6 6 8 9 

0.6 0.3 0.1 714.97 312.03 1009.22 10 1.18 1.16 0.49 0.51 6 6 11 9 

0.6 0.4 0.0 714.97 312.03 1009.31 10 1.17 1.17 0.49 0.51 6 6 11 9 

0.7 0.0 0.3 714.97 320.13 1004.64 1 1.17 0.75 0.24 0.51 6 6 9 9 

0.7 0.1 0.2 714.70 315.27 1007.06 3 1.17 0.75 0.48 0.51 6 6 8 9 

0.7 0.2 0.1 714.81 313.02 1008.49 7 1.18 1.17 0.51 0.51 6 6 8 9 

0.7 0.3 0.0 714.97 312.02 1009.31 10 1.17 1.17 0.49 0.51 6 6 11 9 

0.8 0.0 0.2 714.71 319.62 1006.17 2 1.17 0.75 0.45 0.51 6 6 8 9 

0.8 0.1 0.1 714.76 314.04 1007.81 4 1.17 1.16 0.47 0.51 6 6 11 9 

0.8 0.2 0.0 714.96 312.06 1010.04 10 1.18 1.17 0.49 0.51 6 6 11 9 

0.9 0.0 0.1 714.70 319.50 1006.29 2 1.18 1.17 0.45 0.51 6 6 8 9 

0.9 0.1 0.0 714.71 313.85 1007.96 5 1.17 1.17 0.49 0.51 6 6 8 9 
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Table 6-5: Multi-objective optimisation results for Hobart 

𝒘𝒘𝒃𝒃 𝒘𝒘𝓵𝓵 𝒘𝒘𝒉𝒉 
Scenarios 

Energy  (𝐌𝐌𝐌𝐌/𝐦𝐦𝟐𝟐/𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲) 
Insula-

tion 
(cm) 

Shading 
(N) 

Shading 
(S) 

Shading 
(E) 

Shading 
(W) 

Win 
type 
(N) 

Win 
type 
(S) 

Win 
type 
(E) 

Win 
type 
(W) 

Base Low High 

0.5 0.0 0.5 597.33 295.03 814.21 10 1.17 0.48 0.48 0.51 9 9 8 11 

0.5 0.1 0.4 597.02 295.11 814.63 10 1.17 0.29 0.48 0.51 9 9 8 9 

0.5 0.2 0.3 597.04 295.03 814.65 10 1.15 0.29 0.48 0.51 9 9 8 9 

0.5 0.3 0.2 597.64 291.41 817.04 10 1.15 0.29 0.51 0.51 11 9 11 9 

0.5 0.4 0.1 597.85 290.90 817.43 10 1.02 0.29 0.51 0.51 11 9 11 9 

0.5 0.5 0.0 598.27 290.42 817.95 10 0.88 0.15 0.51 0.51 11 9 11 9 

0.6 0.0 0.4 597.00 295.31 814.63 10 1.17 0.48 0.48 0.51 9 9 8 9 

0.6 0.1 0.3 596.99 295.26 814.63 10 1.17 0.48 0.48 0.51 9 9 8 9 

0.6 0.2 0.2 596.80 294.39 815.82 10 1.09 0.29 0.48 0.51 9 9 8 9 

0.6 0.3 0.1 597.68 291.30 817.16 10 1.13 0.28 0.51 0.51 11 9 11 9 

0.6 0.4 0.0 597.90 290.83 817.53 10 0.99 0.29 0.51 0.51 11 9 11 9 

0.7 0.0 0.3 596.99 295.31 814.62 10 1.17 0.48 0.48 0.51 9 9 8 9 

0.7 0.1 0.2 596.67 294.99 815.68 10 1.17 0.48 0.51 0.51 9 9 11 9 

0.7 0.2 0.1 596.80 294.34 815.84 10 1.07 0.29 0.51 0.51 9 9 11 9 

0.7 0.3 0.0 597.72 291.18 817.61 10 1.07 0.48 0.51 0.51 11 9 11 9 

0.8 0.0 0.2 596.68 295.05 815.68 10 1.17 0.48 0.51 0.51 9 9 11 9 

0.8 0.1 0.1 596.68 294.99 815.68 10 1.17 0.48 0.51 0.51 9 9 11 9 

0.8 0.2 0.0 596.85 294.13 816.01 10 1.02 0.29 0.51 0.51 9 9 11 9 

0.9 0.0 0.1 596.67 295.05 815.72 10 1.17 0.48 0.51 0.51 9 9 11 9 

0.9 0.1 0.0 596.67 294.98 816.07 10 1.17 0.48 0.51 0.51 9 9 11 9 
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6.4 Conclusion  

In this chapter, firstly the sensitivity of building-optimised parameters to 

building simulation inputs was examined for a representative medium-size commercial 

building in both Brisbane and Hobart. Nine variables, including both continuous and 

categorical variables were used, and simulation-based optimisation using the 

ACOMV-M algorithm was utilised as an optimisation method. The results showed that 

under different simulation inputs, the optimised parameters may vary significantly. 

Overestimation or underestimation of simulation assumptions (i.e. lighting and 

equipment loads, occupant density and infiltration rates) can reduce energy savings 

obtained by the simulation-based optimisation method up to 4.8 percentage points if 

the base assumptions are used in optimisation.  

Secondly, using the new methodology based on multi-objective optimisation enables 

identification of sensitive (and insensitive) design parameters with respect to the 

variations of design scenarios. Additionally, the results show that small sacrifices in 

the optimality of a building to any one scenario can result in significantly robust 

solutions across all scenarios. 
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Chapter 7: Surrogate-based Optimisation 

7.1 Overview  

In this chapter, a new surrogate-based optimisation method called Surrogate-

based Optimisation using Active Learning (SOAL) was developed and its results were 

compared to conventional surrogate-based optimisation and simulation-based 

optimisation methods. This chapter is structured as follows: Section 7.2 discusses 

artificial neural networks, which will be used to construct surrogate models; Section 

7.3 details a new active sampling method; Section 7.4 details a new surrogate-based 

optimisation method; finally, Section 7.5 presents the results followed by a conclusion 

in Section 7.6. 

7.2 Artificial Neural Network  

Artificial neural networks (ANNs) have been selected to construct a surrogate 

model, as the literature (see Section 2.3) has found they perform well in both building 

energy prediction and optimisation problems. ANNs are computer-learning models, 

which were inspired by biological neural networks, that mimic the learning process of 

the human brain [67]. The first computational model of neural networks was 

introduced in [157]. An ANN is a network of artificial neurons (also known as artificial 

nodes) that seeks a relationship between the input parameters and outputs without any 

information about the system and only by analysing previously recorded data. The 

architecture of a neuron is depicted in Figure 7.1. 
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As shown, a neuron receives inputs, which are multiplied by the connection weights, 

and produces an output signal by applying an activation function (transfer function) to 

the weighted sum of its inputs. Activation functions are frequently non-linear functions 

such as the sigmoid function or hyperbolic tangent function, which enable neurons to 

model complex non-linear functions. The output of a neuron (𝑦𝑦) can be written as 

follows: 

𝑦𝑦 = 𝑓𝑓 ��𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖 + 𝑏𝑏�  7.1 

where 𝑥𝑥𝑖𝑖 represents the 𝑖𝑖th input of the neuron, 𝑤𝑤𝑖𝑖 is the weight associate with 𝑖𝑖th input 

and 𝑏𝑏 is the bias. The most common ANN is the feed-forward Multi-Layer Perceptron 

(MLP), which consists of a set of neurons in different layers including one input layer, 

one or more hidden layers and one output layer [72, 158]. It has been shown that an 

MLP including a single hidden layer with an appropriate number of neurons is able to 

approximate any function with arbitrary accuracy (i.e. it is a universal approximator) 

[158-161]. A schematic of neural network architecture is shown in Figure 7.2. The 

input layer consists of several neurons, which receive input parameters, and neurons 

in the output layer provide the outputs of the network. Each single neuron is connected 

Figure 7.1: Model of a neuron 
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to all other neurons in the previous layer through weights. In order to identify the 

values of weights, the network is trained using historical data, and the optimal value 

of the weights is found by minimising the Mean-Squared Error (MSE) output of the 

network (predicted values) and actual (desired) values. Back-Propagation is the most 

widely used training method for the neural networks [20, 65], which is essentially a 

gradient descent method that seeks a (local) minimum of the MSE.  

 

Output layer 
(one neuron) 

Input layer (two 
neurons) 

Hidden layer 
(three neurons) 

A key parameter in the performance of ANNs is the number of neurons in hidden 

layers. The number of neurons depends strongly on the problem and should be properly 

selected. Too many neurons in the hidden layers can lead to overfitting. This occurs 

when the network is fit too closely to the training data and the error on the training set 

is very small, while the error of the network on unseen data is large. This means that 

the neural network does not generalise well to new samples. On the other hand, if the 

number of neurons in the hidden layers is too few, the model fails to capture the trend 

of the data (under-fitting). Therefore, the network performs poorly on both training 

and new data. Thus, finding a balance between the fitting performance and the 

generalisation performance is essentially a question of determining the number of 

hidden neurons.  

Figure 7.2: Schematic diagram of a multilayer neural network 
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Thus, in order to use ANNs as a surrogate model, the training of the weights and the 

method for determining of the number of hidden neurons must be specified. These 

issues will be discussed in the next sections. 

7.2.1 Neural Network Training Algorithm 

The neural network training process aims to optimise the values of weights and 

biases in order to minimise network error (difference between network outputs 

(network predictions) and desired outputs). The Levenberg-Marquardt (LM) algorithm 

[162, 163] is an efficient optimisation algorithm that has been widely used for training 

ANNs [164] and is highly recommended as a first-choice algorithm for supervised 

learning problems [165]. The LM algorithm is a combination of the Gauss–Newton 

algorithm and the steepest descent method so that it benefits from the stability of the 

steepest descent method and the speed advantage of the Gauss–Newton algorithm [72, 

164, 166]. In this algorithm the weights are updated as follows: 

𝐰𝐰 𝑘𝑘+1 =  𝐰𝐰𝑘𝑘 − �𝐌𝐌𝑘𝑘 
T 𝐌𝐌𝑘𝑘 +  𝜇𝜇 𝐈𝐈�

−1
𝐌𝐌k 𝐲𝐲k  7.2 

where 𝐰𝐰 is the weight vector,  𝐌𝐌 is the Jacobian matrix containing first derivatives of 

the network errors with respect to the weights, 𝐲𝐲 is the vector of network errors and 𝑰𝑰 

is the identity matrix,. The term ( 𝐌𝐌T𝐌𝐌)  is the approximation of Hessian matrix from 

Gauss–Newton Algorithm and  𝜇𝜇 is a combination coefficient. When 𝜇𝜇 is very small, 

the Levenberg Marquardt algorithm performs like the Gauss–Newton algorithm. In 

contrast, when 𝜇𝜇 is very large, the Levenberg Marquardt algorithm performs like the 

gradient descent algorithm with a small step size.  

7.2.1.1 Early Stopping and Regularization 

Neural network generalisation is the prediction capability of a network over new 

(unseen) data. A network that performs well on training data may perform poorly on 
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new data due to the well-known issue of overfitting, which can occur due to 1) fitting 

too complex of a model (too many hidden neurons) or 2) carrying out too many 

iterations of the iterative method used to train the weights [68, 72, 77]. While cross 

validation is used to prevent 1), 2) is typically mitigated by either early stopping or 

regularisation. 

In early stopping, the training process is terminated before the algorithm’s 

convergence criteria are satisfied. The labelled data is split into two subsets: training 

and validation. The training subset is used for updating the network weights and 

biases, while the validation subset is used to determine the onset of overfitting. During 

the initial iterations of the training process, both the training and validation errors 

decrease. However, when the network starts overfitting, the network’s prediction error 

over the validation subset starts increasing, at which time the training is terminated 

and the network with the minimum validation error is selected. 

A second method to overcome the overfitting issue is Bayesian regularisation. The 

idea of regularisation is to add a regularisation term to the network performance 

function with the aim of penalising the large values of weights. Typically, 

the performance function for training feed-forward neural networks is the MSE of the 

network, which can be written as follows: 

𝐹𝐹𝑜𝑜  =  
1
𝑁𝑁

 �(𝑒𝑒𝑖𝑖)2 =  
1
𝑁𝑁

 �(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 
𝑁𝑁

𝑖𝑖=1

 
𝑁𝑁

𝑖𝑖=1

 
7.3 

where 𝑦𝑦𝑖𝑖 is the output of the neural network for 𝑖𝑖th input, 𝑡𝑡𝑖𝑖 is the desired value 

associated with for 𝑖𝑖th input, and 𝑁𝑁 is the number of training samples. In this method, 

in order to improve the generalisation capability, a term indicating the “size” of the 

network weights and biases is added to the performance function, which can be written 

as follows: 
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𝐹𝐹𝑟𝑟 =  𝛾𝛾 𝐹𝐹𝑤𝑤 + (1 −  𝛾𝛾) 𝐹𝐹𝑜𝑜  7.4 

where 𝐹𝐹𝑟𝑟  is the modified performance function in the regularisation method, 𝛾𝛾 is the 

performance ratio, 𝐹𝐹𝑤𝑤  is the mean of the sum of squares of the network weights and 

biases, which is calculated as follows: 

𝐹𝐹𝑤𝑤 =  
1
𝑁𝑁
�𝑤𝑤𝑖𝑖

2
𝑁𝑁

𝑖𝑖=1

  
7.5 

The modified performance function (Eq.7.4) aims to find a compromise between 

finding small weights and minimising the original performance function (Eq. 7.3). In  

modified performance function, smaller values of weights and biases are preferred 

compared to original cost function, and therefore the network response is smoother 

and less likely to overfit [165]. 

Both early stopping and regularisation methods can significantly improve network 

generalisation when they are applied properly. However, Bayesian regularisation 

provides better generalisation performance for the small data set since it does not 

require a validation subset and therefore can use all of the training data [165]. 

7.2.1.2 Cross Validation 

One well-established method for determining the appropriate number of hidden 

neurons is cross validation, where some of the training data is removed from the 

training set and used to assess the generalisation performance of the model [167]. For 

𝑘𝑘-fold cross-validation, training data are divided into 𝑘𝑘 subsets of (approximately) 

equal size and then the network is trained 𝑘𝑘 times so that each time, one of the subsets 

is left out from training data and used as test data, and the remaining (𝑘𝑘 − 1) data sets 

are used for training the network. The model performance is then expressed as the 

average prediction (generalisation) error over all 𝑘𝑘 test folds. The optimal number of 
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hidden neurons can be found by selecting the number of neurons that result in the 

lowest average prediction error. Thus, the K-fold cross validation process is repeated 

until the model generalisation error stops improving for specific number of iterations. 

Finally, the model with the minimum prediction error (i.e. maximum generalisation 

performance) is chosen.  

The key parameter in this method is the value of 𝐾𝐾 which should be selected 

appropriately [168]. Although there are no generally accepted mathematical formula 

for determining the number of neurons in the hidden layer [158], Kohavi [169] 

investigated the effect of different values of 𝐾𝐾 on many real-world datasets and their 

results showed that the cross validation method with ten folds is suitable for model 

validation. 

7.3 Sample Selection Method  

The typical sample selection method in building performance and optimisation 

problems is random sampling. In this method, sample points are randomly selected to 

train the surrogate model. Due to the random selection, some samples may contain less 

information and not be the representative of the whole design space. Therefore, more 

samples (and higher computational cost) are required to train the surrogate model to 

reach the desired prediction accuracy.  

A new sample selection method is developed in this research to improve the efficiency 

of the surrogate-based optimisation method. The proposed method aims to improve 

the prediction of a surrogate model by selecting the most representative and 

informative samples (samples with high uncertainty) only in the regions where the 

predicted energies are low (around the local minima) to focus building simulations in 

areas of the parameter space that have high potential to be near local minima. 
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Let 𝐿𝐿 = {𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛}𝑛𝑛=1𝑁𝑁  denote the initial training dataset composed 𝑁𝑁 labeled samples 

and 𝑈𝑈 = {𝑥𝑥�𝑚𝑚}𝑚𝑚=1
𝑀𝑀  denote the pool of 𝑞𝑞 unlabeled samples where  𝑞𝑞 > 𝑁𝑁. In order to 

generate a set of samples, Latin Hypercube Sampling (LHS) is used to generate both 

𝐿𝐿 and  𝑈𝑈 to ensure efficient coverage of the entire parameter space [170]. In this 

method, the range of each design variable is divided into 𝑛𝑛 non-overlapping intervals 

with equal probability. A sample is then selected randomly on each interval of every 

design variable.  

In order to select the most informative unlabeled samples for labeling, a committee 

consisting of 𝑃𝑃 surrogate models is built using the initial labeled dataset (𝐿𝐿) with 

different weight initialisations (so that each ANN may achieve a different local 

optimum). Each surrogate model predicts the label of every unlabeled sample point in 

the unlabeled pool of data set (𝑈𝑈). Let the predicted values by the 𝑝𝑝th committee 

member for 𝑥𝑥�𝑚𝑚 be   𝑦𝑦�𝑚𝑚
𝑝𝑝 . Then, the mean and variance of predicted values for 𝑥𝑥�𝑚𝑚 over 

all 𝑃𝑃 committee members may be calculated as follows:  

 

𝑦𝑦�𝑚𝑚 =  
1
𝑃𝑃
�(𝑦𝑦�𝑚𝑚

𝑝𝑝 )
𝑃𝑃

𝑝𝑝=1

 
7.6 

 

𝑣𝑣𝑚𝑚 =  
1
𝑃𝑃
�(𝑦𝑦�𝑚𝑚

𝑝𝑝 − 𝑦𝑦�𝑚𝑚)
𝑃𝑃

𝑝𝑝=1

 
7.7 

In this method, the variance of samples provides an idea of the level of disagreement 

between surrogate models. Samples with higher variance are those which are more 

uncertain and could add more information to improve the surrogate model prediction 

accuracy. Thus, unlabeled sample points are then sorted from the highest to the lowest 
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variance and the first 𝑘𝑘 unlabeled samples (𝑘𝑘 ≤  𝑞𝑞) with the highest variances are 

good candidates for new samples to label. However, it is also highly desirable to select 

samples that are high predicted quality (i.e. low predicted energy) since these samples 

are more likely to be near the optimal parameters. Thus, a condition on the quality of 

the selected samples is set as well. Let 𝒀𝒀� = {𝑦𝑦�1,𝑦𝑦�2, … , 𝑦𝑦�𝑀𝑀} be the vector of predicted 

mean value of unlabeled samples. Only the samples satisfying  

𝑦𝑦�𝑚𝑚 < 𝑃𝑃𝑓𝑓𝑗𝑗  (𝒀𝒀�)       𝑚𝑚 = 1,2, … , 𝑘𝑘    
7.8 

are selected for labelling. In the above equation, 𝑃𝑃𝑓𝑓𝑗𝑗 is a function which returns the 𝑗𝑗th 

percentile of unlabeled samples in the pool and decreases at each optimisation 

iteration. This selection strategy thus leads to an improvement of the accuracy of the 

surrogate model in promising regions (regions with low energy). 

7.4 Proposed Surrogate Based Optimization Method  

A new surrogate-based optimisation method called Surrogate-based Optimisation 

using Active Learning (SOAL) is developed in this section. The flowchart of this 

method is illustrated in Figure 7.3. 

In this method, first an initial surrogate model is constructed with a small number of 

labelled samples (initial training dataset) generated by LHS. In the next step, in order 

to identify the best architecture of the network (i.e. number of hidden neurons), K-fold 

cross validation is applied. The network is then trained 𝑃𝑃 times with different random 

initialisations to build a committee of networks consisting of 𝑃𝑃 surrogate models. Each 

of the 𝑃𝑃 models will result in a network with different accuracy.  

At this point 𝑃𝑃� ∈ [1,𝑃𝑃] surrogate models are optimised. Two variants of the algorithm 

are used:  
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1.  𝑃𝑃� = 1. The best surrogate model (i.e. surrogate model with maximum 

generalisation performance) in the committee is used for optimisation in each 

iteration. 

2.  𝑃𝑃� = 𝑃𝑃. All members of committee are optimised in each iteration.  

Since the optimisation process does not require any further building simulations (only 

evaluation of the surrogate model), each optimisation is much faster than the software-

in-the-loop approach. The ACOR algorithm detailed in 4.4.1 is used for optimisation 

of surrogate model(s) and 𝑃𝑃� optimised solutions are stored in a library for future 

labelling via building simulation. In each iteration, the objective function of 

corresponding optimised solution(s) is calculated by EnergyPlus and compared with 

its value from previous iterations and then the library is updated with the smaller value. 

The solution stored in the library represents the best solution found so far.  

If the stopping criterion (i.e. maximum number of iterations) is not satisfied, new 

samples are generated for subsequent labelling by the building simulation to refine the 

surrogate model. Two methods are used to generate the next (𝑘𝑘) samples: 

In the first method, 𝑃𝑃� optimised solutions obtained by the committee of surrogate 

model(s) in the current iteration are added to the training data set (dataset of building 

simulation results) for the next iteration. These samples are likely close to local minima 

and hence they have the potential to improve the model prediction accuracy in 

promising regions (resulting in local refinement).  

In the second method, the proposed sample selection method stated in section 7.3 is 

used to generate the remaining 𝑘𝑘 − 𝑃𝑃� new samples. Accordingly, a pool of 𝑈𝑈 unlabeled 

samples is generated using the LHS method. The variance and mean of each sample is 

then calculated using Eq. 7.6 and Eq. 7.6, and sorted from the highest to lowest 
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variance. The first 𝑘𝑘 − 𝑃𝑃� samples, which satisfy Eq. 7.8, are selected to be labeled by 

EnergyPlus and then are added to the training dataset. These samples are removed 

from the pool of unlabeled samples. This process is repeated until the stopping 

criterion is satisfied. 

 

 

Figure 7.3: Flowchart of surrogate-based optimisation using active learning  
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7.5 Results 

The SOAL method was applied to building Type B for two cities: Brisbane and 

Melbourne. The building’s characteristics and construction properties were detailed in 

Table 3.3 and Table 3.4 (Chapter 3:). Two modifications were added to this building 

before optimisation (similar to the case study Section 5.4). First, daylighting control 

for each perimeter zone was added. Secondly, temperature set back was removed.  

The objective function is to minimise the annual energy consumption of the building, 

which was stated at Section 4.2 with respect to 15 variables listed in Table 7.2. To 

conduct surrogate model-based optimisation, a standard feed-forward multi-layer 

perceptron ANN with three layers (input, hidden, and output) was used for the 

surrogate model. The sigmoid function was used as the activation function and all input 

data were normalised between [0, 1]. Latin hypercube sampling method was used to 

generate a pool of unlabelled samples with 15000 sample points. A MATLAB code 

was developed to run EnergyPlus automatically and control the whole optimisation 

process, including network training and optimisation algorithm.  

The Levenberg–Marquardt back-propagation algorithm with Bayesian regularisation 

was used to train the network. The algorithm parameters were selected based on 

recommendations in [165] and listed in Table 7.3. Once the training process was 

completed, the ACOR algorithm was applied to optimise the surrogate model(s). The 

initial surrogate model was built using 50 training samples. These initial samples were 

labelled by EnergyPlus. In other words, EnergyPlus calculates annual end-use energy 

consumption (Eq. 4.2) associated with each sample (i.e. each sample includes a set of 

fifteen variables shown in Table 7.2 which their values are selected through the Latin 

Hypercube method). The committee of surrogate models contains five members (𝑃𝑃 =

5) with different initialisations. In each iteration, 50 new samples were added to the 



 

114 Chapter 7: Surrogate-based Optimisation 

training dataset (𝑘𝑘 = 50). The values of function 𝑃𝑃𝑓𝑓𝑗𝑗 were calculated based on Table 

7.1.  

Table 7-1: Percentiles for the (P)SOAL method   

Iteration number 1 2 3 4 5 6 7 8 9 10 11 12 ⋯ 40 
𝑃𝑃𝑓𝑓𝑗𝑗 (Percentile)  50 45 40 35 30 25 20 15 10 5 1 1 ⋯ 1 

 To conduct the simulation-based optimisation, PSOIW (using GenOpt software) and 

ACOR algorithms were directly connected to EnergyPlus. The algorithms’ parameters 

were chosen based on the recommendations of previous studies [44, 151] and are as 

listed in Table 4.3 and Table 4.4 (Chapter 4:). 

Table 7-2: Optimisation variables  

Variables Description Initial Value Variable Range 

x1 Roof emissivity  0.7 [0.5-0.9] 

x2 Roof solar absorptance  0.7 [0.3-0.85] 

x3 Wall insulation (cm) 4.5 [1- 10] 

x4 Wall solar absorptance 0.7 [0.3-0.9] 

x5 North window height (m) 1.35 [0.5-1.5] 

x6 South window height (m) 1.35 [0.5-1.5] 

x7 East window height (m) 0.54 [0.5-1.5] 

x8 West window height (m) 0.54 [0.5-1.5] 

x9 North overhang depth (m) - [0-1.5] 

x10 South overhang depth (m) - [0-1.5] 

x11 East overhang depth (m) - [0-1.5] 

x12 West overhang depth (m) - [0-1.5] 

x13 Heating setpoint (°C) 20 [18-22] 

x14 Cooling setpoint (°C) 24 [23-27] 

x15 Building orientation (degree) 0 [0-45] 

 

Table 7-3: Parameters of Levenberg–Marquardt with Bayesian regularisation 
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Parameters Value 

Maximum number of epochs to train 2000 

Marquardt adjustment parameter 0.005 

Decrease factor for mu 0.1 

Increase factor for mu 10 

Maximum value for mu 1e10 

Minimum performance gradient 1e-7 

 

Fifteen optimisation runs were conducted for each optimisation algorithm using 

QUT’s High Performance Computing (HPC) cluster, since 2000 building simulations 

were required for each run. The time required for 2000 building simulations with 

EnergyPlus 8.1.0 is approximately 25 hours. In surrogate-based optimisation methods, 

training time depends on the number of sample points used for training, which took 

less than ten minutes for 2000 samples. 

7.5.1 Network configuration identification 

𝐾𝐾-fold cross validation was used to determine the optimal number of neurons in 

the hidden layer. A 10-fold cross validation is selected in this research, which has been 

recommended by previous studies [168, 169]. The performance of the network is then 

calculated as the average accuracy of the networks over 10 folds. MSE is used to 

evaluate the performance of the each network.  

Figure 7.4 shows an example of the MSE performance for 10-fold cross validation for 

an ANN that was trained using 500 samples for Brisbane. As can be seen, the 

minimum MSE performance was achieved for a network with 6 neurons in the hidden 

layer. During the optimisation process, new samples were added to the training data 

and this process was applied to determine the optimal configuration of the network in 
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each iteration. Similarly, Figure 7.5 shows the MSE performance for 10-fold cross 

validation for Melbourne. As shown, the optimal configuration was achieved for the 

network when the number of neurons in the hidden layer is 8. 

 
Figure 7.4: Cross validation MSE for Brisbane (averaged over 10 folds) 

 

 
 

Figure 7.5: Cross validation MSE for Melbourne (averaged over 10 folds) 
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7.5.2 Optimisation Results 

Figure 7.6 shows the best solution found as a function of the number of building 

simulations for Brisbane. This figure compares the results of five different methods, 

including two software-in-the-loop methods (PSOIW and ACOR in the figure), and 

three surrogate-based optimisation methods using different sampling strategies: 

random sampling, SOAL when 𝑃𝑃� = 1 and SOAL when 𝑃𝑃� = 5 (P-SOAL). In this 

figure, the median over the 15 optimisation runs are presented. A comparison of 

surrogate-based optimisation methods shows that the P-SOAL method performs the 

best and both active sampling methods outperform random sampling. This figure also 

shows that all surrogate-based optimisation methods perform better than software-in-

the-loop with PSOIW algorithm. A comparison between surrogate-based optimisation 

methods and software-in-the-loop with ACOR shows all surrogate-based optimisation 

methods are able to find better solutions at the early stages of optimisation while after 

approximately 1000 building simulations both SOAL and P-SOAL remain 

competitive to the ACOR algorithm. As can be seen, ACOR performs slightly better 

than SOAL and P-SOAL after 1000 building simulations. The reason is likely due to 

the fact that surrogate model approximation is not exact; however, from an energy 

point of view these differences are quite small as a percentage of building energy 

consumption.  

Figure 7.7 shows the median value of results of convergence curve for fifteen runs for 

Melbourne. Similar to results for Brisbane, all surrogate-based optimisation methods 

outperform PSOIW, and P-SOAL performs the best among surrogate model-based 

optimisation methods; it outperforms ACOR at the early stages of optimisation and it 

remains a competitive method to ACOR. 
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Figure 7.6: Convergence curve of the optimisation results for Brisbane (Median 
value of fifteen runs) 

 

  
Figure 7.7: Convergence curve of the optimisation results for Melbourne (Median 

value of fifteen runs)  
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 Table 7.4 shows the best parameter sets among all fifteen runs after 2000 

building simulations for each algorithm for Brisbane and Melbourne. For both cities, 

the best solutions (the bold rows in the table) were obtained by ACOR while PSOIW 

found the worst solution. This table shows that the optimised building orientations are 

approximately 11 and 43 degrees relative to North (clockwise) for Brisbane and 

Melbourne, respectively. For both cities, the optimised wall has the minimum solar 

absorptance, and the optimised roof has the maximum emissivity with minimum solar 

absorptance. For Melbourne, the maximum wall insulation thickness was selected by 

the optimisation algorithm, while the minimum insulation thickness was chosen for 

Brisbane. This is likely due to Brisbane’s climate, where buildings frequently have a 

little-to-no heating loads and high internal loads in the buildings during daytime [91]. 

With regard to window size, the minimum value was selected for all building’ faces, 

except for the variable 𝑥𝑥12 (west overhang depth) in Brisbane. The optimised value for 

overhang depends on city and building direction. The minimum and maximum were 

selected for heating and cooling set-points for all cities, respectively. This is clearly 

expected when thermal comfort is not considered in the objective function and only as 

a constraint on the allowable range of indoor temperature set points. 

From an energy point-of-view, the difference between optimised objective functions 

obtained by ACOR and surrogate-based optimisation using active learning methods 

may be considered small. Despite these small differences, different sets of parameters 

have been obtained, which shows that the building objective function is very multi-

modal. 
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Table 7-4: Best parameter sets of optimisation results 

B
ri

sb
an

e 

Method 
Objective 
Function 
(MJ/m2) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

Surrogate 
with 

random 
sampling 

630.60 0.9 0.3 1 0.3 0.5 0.5 0.5 0.5 0.29 0.25 0.34 0.65 18 27 11.09 

SOAL 630.48 0.9 0.3 1 0.3 0.5 0.5 0.5 0.66 0.35 0.39 0.36 1.50 18 27 8.78 

P-SOAL 630.18 0.9 0.3 1 0.3 0.5 0.5 0.5 0.7 0.33 0.23 0.47 1.50 18 27 10.23 

ACOR 629.62 0.88 0.3 1 0.3 0.5 0.5 0.5 0.72 0.55 0.54 0.54 1.44 18 27 11.11 

PSOIW 635.31 0.72 0.42 1 0.31 0.58 0.57 0.87 0.52 0.63 0.55 0.84 0.39 18 27 24.14 

M
el

bo
ur

ne
 

Surrogate 
with 

random 
sampling 

583.89 0.9 0.3 10 0.3 0.5 0.5 0.5 0.5 0.26 0 0.54 0.89 18 27 0 

SOAL 581.73 0.9 0.3 10 0.3 0.5 0.5 0.5 0.5 0.39 0.43 0.21 0.52 18 27 45 

P-SOAL 581.53 0.9 0.3 10 0.3 0.5 0.5 0.5 0.5 0.38 0.39 0.26 0.54 18 27 40.83 

ACOR 580.51 0.89 0.31 10 0.31 0.5 0.5 0.51 0.51 0.53 0.52 0.24 0.54 18 27 42.76 

PSOIW 585.64 0.79 0.3 8 0.47 0.51 0.5 0.52 0.51 0.37 0.06 0.56 0.82 18 27 9.23 
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Figure 7.8: Breakdown of energy consumption before and after optimisation 

Figure 7.8 shows the building annual energy consumption and the breakdown of 

energy consumption before and after optimisation for Brisbane and Melbourne. After 

applying the optimisation method, the annual energy consumption was reduced by 

19.7% and 20.9% for Brisbane and Melbourne, respectively. Comparison of energy 

breakdown between non-optimised and optimised building shows that optimisation 

has significantly reduced the fan (approximately 61%) and cooling loads 

(approximately 20%) for both cities. The fan energy consumptions were reduced 

 34.6 MJ/m2 and  37.9 MJ/m2 for Brisbane and Melbourne, respectively. The cooling 

loads dropped  109.8 MJ/m2 and  76.8 MJ/m2 for Brisbane and Melbourne, 

respectively. 

It is noteworthy that despite the use of daylighting control, lighting loads almost 

remain unchanged before and after optimisation. The reason is that minimising the 

cooling and lighting loads are conflicting objectives, therefore, the optimisation 
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algorithm prioritises reduction of the cooling loads. Since the optimisation seeks the 

best balance between the various building loads, it is highly likely that an attempt to 

further decrease the lighting or cooling load would lead to a corresponding increase of 

equal or greater magnitude in the other. 

7.6 Conclusion  

In this chapter, a new simulation-based optimisation method using active 

learning, called SOAL, was developed and compared with simulation-based 

optimisation (software in the loop) and the surrogate-based optimisation method using 

random sampling. For the simulation-based optimisation, two PSOIW and ACOR 

algorithms were used. Results showed that proposed optimisation methods based on 

active learning could significantly improve the performance of the surrogate-based 

optimisation method. Importantly, in single objective optimisation problems, the 

proposed method not only is a competitive method to the simulation-based 

optimisation method using ACOR, but also could find higher quality solutions (fairly 

close to the final solutions) at the early optimisation stages. This demonstrates the 

potential of active learning surrogate-based optimisation methods in the building 

design phase. 

All optimisation methods were applied to optimise fifteen variables in a typical, 

medium-size commercial building in Brisbane and Melbourne. Results showed that 

after applying optimisation methods, approximately 20% energy savings were 

achieved for both cities. A comparison of energy breakdown between optimised and 

non-optimised building showed that cooling load and fan energy consumption 

experienced the largest energy reductions for both cities. 
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Chapter 8: Conclusions and Future Work 

Building optimisation problems are time-consuming and complex due to multi-modal 

and nonlinear behaviour of building thermal performance, discontinuities in the 

optimisation variables (e.g. window type), uncertainty in building design parameters 

(e.g. alterations in building operating conditions) and discontinuities in the output of 

building simulation software (e.g. EnergyPlus). This high computational cost remains 

a key barrier to practical use of optimisation methods as a building design tool. 

Generally, BOPs can be categorised into two main groups: simulation-based 

optimisation (software-in-the-loop method) and surrogate-based optimisation 

methods. In this thesis, new methods were developed to improve the performance of 

both methods. 

The first contribution of this research was to significantly improve the 

performance of simulation-based optimisation methods. This was accomplished by the 

development of two optimisation algorithms. In Chapter 4:, the ACOR algorithm was 

developed for BOPs with continuous variables, and in Chapter 5:, the ACOMV-M 

algorithm was developed for BOPs with mixed variables. Results demonstrated that 

both algorithms are more efficient than current building optimisation algorithms in 

terms of optimality, consistency, and computational cost.  

The second contribution of this research was the development of a new methodology 

to address uncertainty of building simulation inputs during the optimisation process 

and to select an appropriate robust design. This was accomplished by development of 

a multi-objective scenario-based optimisation solved by the ACOMV-M algorithm 



 

124 Chapter 8: Conclusions and Future Work 

(Chapter 6). Results demonstrated the capability of proposed uncertainty methodology 

to find a robust design. 

The third contribution of this research was the development of a new methodology for 

surrogate model-based optimisation methods (Chapter 7). This was accomplished by 

the development of a new sample selection method to intelligently select samples for 

the surrogate model construction and development of a new surrogate model-based 

optimisation method, based on multiple surrogate models in the optimisation loop. 

Building optimisation methods can be used to effectively find the optimal value of 

design variables within acceptable ranges defined by designers. These methods can 

significantly improve the drawbacks of conventional methods such as parametric 

analysis which often lead to a partial improvement due to complex and non-linear 

interactions of design variables. The methods developed in this thesis can be used by 

building designers to design energy-optimised buildings as they have shown to 

facilitate the solving of BOPs and improve the state-of-the art in terms of optimality, 

speed, and consistency of the optimised results. They are expected to aid building 

designers in meeting energy efficiency requirements in building codes. According to 

research findings, applying optimisation methods to typical commercial buildings in 

Australia showed that: 

• Optimisation can significantly reduce energy consumption of commercial 

buildings which are fairly robust to errors in assumptions on internal loads 

• In all the locations considered in this thesis, the building envelope shape and 

the level of thermal insulation are strongly dependent on building internal loads 

so that an optimised design may not require insulation at all 
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• Multi-objective scenario-based optimisation method can provide a design with 

higher robustness to poorly known (or time-varying) building simulation 

assumptions (e.g. changes in internal loads) 

A number of areas of future work are recommended: 

 
• In this thesis, it was demonstrated that ACO algorithms are highly capable for 

BOPs. Future studies could hybridise the ACO algorithm with other algorithms 

(e.g. hybrid ACO and a local search algorithm) to improve the performance of 

ACO-based algorithms.  

• This thesis mainly focused on single-objective building optimisation problems 

(i.e. energy consumption) while other objectives have been not been considered 

(e.g. thermal comfort, cost or peak demand), which will be the subject of future 

studies. 

• This research demonstrated that surrogate-based optimisation methods are very 

promising to reduce computational cost of BOPs. However, building 

optimisation using surrogate models are still in the early stages of development 

and new sample selection methods could be devised to further improve the 

performance of surrogate-based optimisation methods. Some studies have 

reported the superiority of surrogate-based optimisation methods over 

software-in-the-loop in terms of convergence speed in the multi-objective 

optimisation problems [19]. It would be expected that the proposed surrogate-

based optimisation method can show better performance than both 

conventional surrogate-based optimisation methods and software-in-the-loop 

in multi-objective optimisation problems as well. 
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• While ANNs were successfully employed in this research, other machine 

learning methods (e.g. Support Vector Regression) may lead to improved 

performance or provide other information (e.g. uncertainty estimates) that  

would be advantageous for sample selection. An avenue of future work is 

therefore to investigate the use of other machine-learning models as surrogates. 

• This research is the first work that has developed a smart sampling method for 

BOPs using surrogate model-based optimisation methods. Future studies could 

develop other sample selection methods for BOPs. 

• This research investigated the uncertainty in building simulation inputs (e.g. 

occupancy) while other types of uncertainty such as uncertainty in thermo-

physical properties of constructional materials or weather data have not been 

considered; these should be the subject of future studies.  

• In this research, SWM was used to find Pareto optimal front by scalarization 

of the multi-objective optimisation problem to a set of single optimisation 

problems with different weights. Optimal solutions of this set of problems 

identify samples of the Pareto front. Other existing multi-objective 

optimisation algorithms seek to evolve populations to provide improved 

estimates of the Pareto front (e.g. NSGA-II, Strength Pareto Evolutionary 

Algorithm). However, the exploration of these other evolutionary approaches 

is left to future work. 

• This thesis mainly focused on optimisation of commercial buildings in 

Australia. This research could be extended for optimisation of residential 

buildings.
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